Advertisement

Genetica

, Volume 140, Issue 4–6, pp 105–114 | Cite as

Human influence on the population decline and loss of genetic diversity in a small and isolated population of Sichuan snub-nosed monkeys (Rhinopithecus roxellana)

  • Zong Fei Chang
  • Mao Fang Luo
  • Zhi Jin Liu
  • Jing Yuan Yang
  • Zuo Fu Xiang
  • Ming Li
  • Linda Vigilant
Article

Abstract

Human activities have caused worldwide loss and fragmentation of natural habitats, resulting in the decline and isolation of wild populations, consequently increasing their risks of extinctions. We investigated the genetic consequences of anthropogenic effects on the Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in the Shennongjia Nature Reserve (SNR), which is a small and isolated distribution of R. roxellana in China and would continue to be threatened by habitat degradation and loss, using extensive sampling and 16 microsatellite loci. High level of genetic variation was observed from 202 individuals collected from three R. roxellana populations (SNR population, Sichuan-Gansu population and Shaanxi population). However, R. roxellana in SNR showed the lowest genetic diversity. The likelihood analysis of migration/drift equilibrium indicated that the SNR population suffered much stronger effect of drift than the other two populations, indicating that small populations are prone to be affected by drift. The STRUCTURE analysis identified two clusters, separating the SNR population from the other two populations, suggesting an increasing drift-induced differentiation between SNR and the other two populations. Bottleneck tests revealed that R. roxellana in SNR experienced a severe population decline (37-fold) during the past 500 years as a consequence of human population expansion. The current effective population size (Ne) in SNR is less than 100 and the ratio of Ne to the census population size is approximately 0.08. Based on our findings, we suggest that the SNR population should be monitored systematically and considered as an important conservation and management unit.

Keywords

Rhinopithecus roxellana Microsatellite Genetic diversity Bottleneck Human activities 

Notes

Acknowledgments

This project was supported by the Natural Science Foundation of China (No. 31130061), the Project of Public Benefit (No. 201104073), National Basic Research Program of China (973 Program: 2007CB411600), the Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-R-091), Hubei Province Key Laboratory of Conservation Biology of Shennongjia Golden Monkey, and the joint doctoral program of the Max Planck Society and the Chinese Academy of Sciences (Z-F. C.). We thank Dr. K. Guschanski for experimental guidance. We also thank G. Schubert, M. Arandjelovic, K. Langergraber, J. Bhagavatula, L. F. Zhu, and Y. B. Hu for helpful discussions.

Supplementary material

10709_2012_9662_MOESM1_ESM.doc (99 kb)
Supplementary material 1 (DOC 99 kb)

References

  1. Arandjelovic M, Guschanski K, Schubert G et al (2009) Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol Ecol Resour 9:28–36PubMedCrossRefGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, et al (1996–2004) Genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  3. Bennett EL (1988) Proboscis monkeys and their swamp forests in Sarawak. Oryx 22:69–74CrossRefGoogle Scholar
  4. Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J Evol Biol 13:502–514CrossRefGoogle Scholar
  5. Burkey TV (1995) Extinction rates in archipelagos: implications for populations in fragmented habitats. Conserv Biol 9:527–541CrossRefGoogle Scholar
  6. Chang ZF, Liu ZJ, Yang JY, Li M, Vigilant L (2012) Noninvasive genetic assessment of the population trend and sex ratio of the Shennongjia population of Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Chin Sci Bull 57:1135–1141CrossRefGoogle Scholar
  7. Ciofi C, Beaumont MA, Swingland IR et al (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc B-Biol Sci 266:2269–2274CrossRefGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  9. Crawford NG (2009) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557PubMedCrossRefGoogle Scholar
  10. Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  12. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  13. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential. Anim Conserv 1:69–70CrossRefGoogle Scholar
  15. Goossens B, Chikhi L, Ancrenaz M et al (2006) Genetic signature of anthropogenic population collapse in Orang-utans. PLoS Biol 4:285–291CrossRefGoogle Scholar
  16. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html
  17. Hu YB, Guo Y, Qi DW et al (2011) Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol Ecol 20:2662–2675PubMedCrossRefGoogle Scholar
  18. Jablonski NG (1992) Dental agenesis as evidence of possible genetic isolation in the Colobine monkey, Rhinopithecus roxellana. Primates 33:371–376CrossRefGoogle Scholar
  19. Jablonski NG (1998) The response of Catarrhine primates to Pleistocene environmental fluctuations in east Asia. Primates 39:29–37CrossRefGoogle Scholar
  20. Jeffreys H (1961) Theory of probability third edition. Oxford classic texts in the physical sciences. Oxford University Press, OxfordGoogle Scholar
  21. Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064CrossRefGoogle Scholar
  22. Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437CrossRefGoogle Scholar
  23. Lawton RJ, Messmer V, Pratchett MS et al (2011) High gene flow across large geographic scales reduces extinction risk for a highly specialised coral feeding butterflyfish. Mol Ecol 20:3584–3598PubMedGoogle Scholar
  24. Li M, Liang B, Feng ZJ et al (2001) Molecular phylogenetic relationships among Sichuan snub-nosed monkeys (Rhinopithecus roxellanae) inferred from mitochondrial cytochrome-b gene sequences. Primates 42:153–160CrossRefGoogle Scholar
  25. Li BG, Pan RL, Oxnard CE (2002) Extinction of snub-nosed monkeys in China during the past 400 years. Int J Primatol 23:1127–1244CrossRefGoogle Scholar
  26. Li HP, Meng SJ, Men ZM et al (2003) Genetic diversity and population history of golden monkeys (Rhinopithecus roxellana). Genetics 164:269–275PubMedGoogle Scholar
  27. Li M, Liu ZJ, Gou JX et al (2007a) Phylogeography and population structure of the golden monkeys (Rhinopithecus roxellana): inferred from mitochondrial DNA sequences. Am J Primatol 69:1195–1209PubMedCrossRefGoogle Scholar
  28. Li YB, Huang CM, Ding P, Tang Z, Wood C (2007b) Dramatic decline of François’ langur Trachypithecus francoisi in Guangxi Province, China. Oryx 41:38–43CrossRefGoogle Scholar
  29. Liu ZJ, Ren BP, Wu RD et al (2009) The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys (Rhinopithecus bieti) implies an anthropogenic genetic discontinuity. Mol Ecol 18:3831–3846PubMedCrossRefGoogle Scholar
  30. Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol 13:523–536PubMedCrossRefGoogle Scholar
  31. Luo MF, Liu ZJ, Pan HJ et al (2012) Historical geographic dispersal of the golden snub-nosed monkey (Rhinopithecus roxellana) and the influence of climatic oscillations. Am J Primatol 74:91–101PubMedCrossRefGoogle Scholar
  32. Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72CrossRefGoogle Scholar
  33. Madsen T, Shine R, Olsson M et al (1999) Conservation biology: restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  34. Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486PubMedCrossRefGoogle Scholar
  35. Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:4334–4339PubMedCrossRefGoogle Scholar
  36. Munshi-South J, Bernard H (2011) Genetic diversity and distinctiveness of the proboscis monkeys (Nasalis larvatus) of the Klias peninsula, Sabah, Malaysia. J Hered 102:342–346PubMedCrossRefGoogle Scholar
  37. Nsubuga AM, Robbins MM, Roeder AD et al (2004) Factors affecting the amount of genomic DNA extracted from ape feces and the identification of an improved sample storage method. Mol Ecol 13:2089–2094PubMedCrossRefGoogle Scholar
  38. Pan D, Hu HX, Meng SJ et al (2009) A high polymorphism level in Rhinopithecus roxellana. Int J Primatol 30:337–351CrossRefGoogle Scholar
  39. Park SDE (2001) Trypanotolerance in West African Cattle and the population genetic effects of selection [Ph.D. thesis] University of DublinGoogle Scholar
  40. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  42. Quan GQ, Xie JH (2002) Research on the golden monkeys. Science and Education Publishing House, BeijingGoogle Scholar
  43. Reed DH, Bryant EH (2000) Experimental tests of minimum viable population size. Anim Conserv 3:7–14CrossRefGoogle Scholar
  44. Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphism. Nat Rev Genet 3:380–390PubMedCrossRefGoogle Scholar
  45. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  46. Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  48. Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian method. Evolution 56:154–166PubMedGoogle Scholar
  49. Sun T, Wang BS, Liu ZJ et al (2010) Identification and characterization of microsatellite markers via cross-species amplification from François’ langur (Trachypithecus francoisi). Acta Theriologica Sinica 30:351–353Google Scholar
  50. Tallmon DA, Koyuk A, Luikart GH et al (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301PubMedCrossRefGoogle Scholar
  51. Van Oosterhout C, Hutchinson WF, Wills DPM (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  52. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756PubMedCrossRefGoogle Scholar
  53. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  54. Willi Y, Buskirk JV, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  55. Zhang RZ, Chen LW, Qu YW et al (2002) The primates of China: biogeography and conservation status—past, present and future. Edit by Department of Wildlife Conservation, State Forestry Administration, the People’s Republic of China. China Forestry Publishing House, BeijingGoogle Scholar
  56. Zhang BW, Li M, Zhang ZJ et al (2007) Genetic viability and population history of the Giant panda, putting an end to the “evolutionary dead end”? Mol Biol Evol 24:1801–1810PubMedCrossRefGoogle Scholar
  57. Zhu ZQ (2003) Ecological research of golden monkeys (Rhinopithecus roxellana) in Shennongjia Nature Reserve. Hubei For Sci Tech Z1:46–52 (in Chinese)Google Scholar
  58. Zhu LF, Zhan XJ, Wu H et al (2010) Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas. Conserv Biol 24:1299–1306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zong Fei Chang
    • 1
    • 2
    • 3
  • Mao Fang Luo
    • 1
    • 3
  • Zhi Jin Liu
    • 1
  • Jing Yuan Yang
    • 4
  • Zuo Fu Xiang
    • 5
  • Ming Li
    • 1
  • Linda Vigilant
    • 2
  1. 1.Key Lab of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina
  4. 4.Hubei Province Key Laboratory of Conservation Biology of Shennongjia Golden MonkeyMuyuChina
  5. 5.College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina

Personalised recommendations