Advertisement

Genetica

, Volume 139, Issue 11–12, pp 1509–1519 | Cite as

Paternal leakage of mitochondrial DNA in experimental crosses of populations of the potato cyst nematode Globodera pallida

  • Angelique H. Hoolahan
  • Vivian C. Blok
  • Tracey Gibson
  • Mark Dowton
Article

Abstract

Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4 kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40 % of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.

Keywords

Paternal leakage mtDNA inheritance Mitochondrial DNA Heteroplasmy Biparental inheritance Hybrid zone 

Notes

Acknowledgments

This work was supported by the Australian Research Council [DP0556520]; the University of Wollongong Internationalization Committee [UIC2007]; the Australian Academy of Science [RI 146] and the Scottish Executive’s Rural and Environment Research and Analysis Directorate Workpackage 1.5.4. The technical support and assistance of M. Phillips, A. Holt and A. Paterson are gratefully acknowledged. Sequence data from this article have been deposited with the EMBL/GenBank. Data Libraries under accession numbers HQ670242-HQ670401.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10709_2012_9650_MOESM1_ESM.pdf (216 kb)
Online Resource 1 Electropherograms of the internal transcribed spacer (ITS) region sequenced from the parental populations and 3 progeny from an experimental cross of Globodera pallida populations P5A and Lindley. Arrows indicate examples of where there are 2 bases present at the same site in the progeny, corresponding to the two different nucleotides that were evident at that polymorphic site when the maternal and paternal sequences are compared (underlined). (a) Maternal ITS sequence from population P5A. (b) Paternal ITS sequence from population Lindley. (c-e) Progeny ITS sequences from 3 cysts of the cross of populations P5A and Lindley (PDF 216 kb)

References

  1. Anderson TJC, Komuniecki R, Komuniecki PR, Jaenike J (1995) Are mitochondria inherited paternally in Ascaris? Int J Parasitol 25:1001–1004PubMedCrossRefGoogle Scholar
  2. Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863PubMedCrossRefGoogle Scholar
  3. Armstrong MR, Blok VC, Phillips MS (2000) A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154:181–192PubMedGoogle Scholar
  4. Armstrong MR, Husmeier D, Phillips MS, Blok VC (2007) Segregation and recombination of a multipartite mitochondrial DNA in populations of the potato cyst nematode Globodera pallida. J Mol Evol 64:689–701PubMedCrossRefGoogle Scholar
  5. Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338PubMedCrossRefGoogle Scholar
  6. Birky CW Jr (2008) Uniparental inheritance of organelle genes. Curr Biol 18:R692–R695PubMedCrossRefGoogle Scholar
  7. Blair L, Perry RN, Oparka K, Jones JT (1999) Activation of transcription during the hatching process of the potato cyst nematode Globodera rostochiensis. Nematology 1:103–111CrossRefGoogle Scholar
  8. Blok VC, Malloch G, Harrower B, Phillips MS, Vrain TC (1998) Intraspecific variation in ribosomal DNA in populations of the potato cyst nematode Globodera pallida. J Nematol 30:262–274PubMedGoogle Scholar
  9. Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet 23:465–474PubMedCrossRefGoogle Scholar
  10. Canto Saenz M, De Scurrah MM (1977) Races of the potato cyst nematode in the Andean region and a new system of classification. Nematologica 23:340–349CrossRefGoogle Scholar
  11. Cares JE, Baldwin JG (1994) Fine structure of sperm of Ekphymatodera thomasoni (Heteroderinae, Nemata). J Nematol 26:375–383PubMedGoogle Scholar
  12. Chapman RW, Stephens JC, Lansman RA, Avise JC (1982) Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genet Res 40:41–57PubMedCrossRefGoogle Scholar
  13. Chitwood BG, Buhrer EM (1945) Summary of soil fumigant tests made against the golden nematode of potatoes (Heterodera rostochiensis, Wollenweber), 1942–1944. Proc Helminthol Soc Wash 12:39–41Google Scholar
  14. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl H-HM, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254PubMedCrossRefGoogle Scholar
  15. Evans K, Stone AR (1977) A review of the distribution and biology of the potato cyst-nematodes Globodera rostochiensis and G. pallida. Trop Pest Manag 23:178–189CrossRefGoogle Scholar
  16. Ferris VR, Ferris JM, Faghihi J (1993) Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes. Fundam Appl Nematol 16:177–184Google Scholar
  17. Fontaine KM, Cooley JR, Simon C (2007) Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.). PLoS ONE 2:e892PubMedCrossRefGoogle Scholar
  18. Gibson T, Blok VC, Phillips MS, Hong G, Kumarasinghe D, Riley IT, Dowton M (2007) The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome. J Mol Evol 64:463–471PubMedCrossRefGoogle Scholar
  19. Green CD, Greet DN, Jones FGW (1970) The influence of multiple mating on the reproduction and genetics of Heterodera rostochiensis and H. schachtii. Nematologica 16:309–326CrossRefGoogle Scholar
  20. Grenier E, Bossis M, Didier F, Renault L, Didier M (2001) Molecular approaches to the taxonomic position of Peruvian potato cyst nematodes and gene pool similarities in indigenous and imported populations of Globodera. Heredity 86:277–290PubMedCrossRefGoogle Scholar
  21. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. Nature 352:255–257PubMedCrossRefGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp 41:95–98Google Scholar
  23. Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112PubMedCrossRefGoogle Scholar
  24. Janssen R, Bakker J, Gommers F (1987) Circumventing the diapause of potato cyst nematodes. Eur J Plant Pathol 93:107–113Google Scholar
  25. Kaneda H, Hayashi J-I, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 92:4542–4546PubMedCrossRefGoogle Scholar
  26. Katoh K, Misawa K, Kuma K-i, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  27. Komuniecki PR, Johnson J, Kamhawi M, Komuniecki R (1993) Mitochondrial heterogeneity in the parasitic nematode, Ascaris suum. Exp Parasitol 76:424–437PubMedCrossRefGoogle Scholar
  28. Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663PubMedGoogle Scholar
  29. Kvist L, Martens J, Nazarenko AA, Orell M (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243–247PubMedCrossRefGoogle Scholar
  30. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964PubMedGoogle Scholar
  31. Madani M, Subbotin SA, Ward LJ, Li X, DeBoer SH (2010) Molecular characterization of Canadian populations of potato cyst nematodes, Globodera rostochiensis and G. pallida using ribosomal nuclear RNA and cytochrome b genes. Can J Plant Pathol 32:252–263CrossRefGoogle Scholar
  32. Magoulas A, Zouros E (1993) Restriction-site heteroplasmy in anchovy (Engraulis encrasicolus) indicates incidental biparental inheritance of mitochondrial DNA. Mol Biol Evol 10:319–325Google Scholar
  33. Meusel MS, Moritz RFA (1993) Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr Genet 24:539–543PubMedCrossRefGoogle Scholar
  34. Niki Y, Chigusa SI, Matsuura ET (1989) Complete replacement of mitochondrial DNA in Drosophila. Nature 341:551–552PubMedCrossRefGoogle Scholar
  35. Picard D, Sempere T, Plantard O (2007) A northward colonisation of the Andes by the potato cyst nematode during geological times suggests multiple host-shifts from wild to cultivated potatoes. Mol Phylogenet Evol 42:308–316PubMedCrossRefGoogle Scholar
  36. Pikó L, Matsumoto L (1976) Number of mitochondria and some properties of mitochondrial DNA in mouse egg. Dev Biol 49:1–10PubMedCrossRefGoogle Scholar
  37. Rawi AL, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147PubMedCrossRefGoogle Scholar
  38. Rokas A, Ladoukakis E, Zouros E (2003) Animal mitochondrial DNA recombination revisited. Trends Ecol Evol 18:411–417CrossRefGoogle Scholar
  39. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144PubMedCrossRefGoogle Scholar
  40. Saville BJ, Kohli Y, Anderson JB (1998) mtDNA recombination in a natural population. Proc Natl Acad Sci USA 95:1331–1335PubMedCrossRefGoogle Scholar
  41. Schlötterer C, Hauser MT, von Haeseler A, Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11:513–522PubMedGoogle Scholar
  42. Shepherd AM, Clark SA, Kempton A (1973) Spermatogenesis and sperm ultrastructure in some cyst nematodes, Heterodera spp. Nematologica 19:551–560CrossRefGoogle Scholar
  43. Sherengul W, Kondo R, Matsuura ET (2006) Analysis of paternal transmission of mitochondrial DNA in Drosophila. Genes Genet Syst 81:399–404PubMedCrossRefGoogle Scholar
  44. Shitara H, Hayashi J, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148:851–857PubMedGoogle Scholar
  45. Siddiqi M (1986) Tylenchida: parasites of plants and insects. CAB International, WallingfordGoogle Scholar
  46. Skantar AM, Handoo ZA, Carta LK, Chitwood DJ (2007) Morphological and molecular identification of Globodera pallida associated with potato in Idaho. J Nematol 39:133–144PubMedGoogle Scholar
  47. Stone AR (1985) Co-evolution of potato cyst nematodes and their hosts: implications for pathotypes and resistance. EPPO Bull 15:131–137CrossRefGoogle Scholar
  48. Subbotin SA, Halford PD, Warry A, Perry RN (2000) Variations in ribosomal DNA sequences and phylogeny of Globodera parasitising solanaceous plants. Nematology 2:591–604CrossRefGoogle Scholar
  49. Suematsu T, Sato A, Sakurai M, Watanabe K, Ohtsuki T (2005) A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2. Nucl Acids Res 33:4683–4691PubMedCrossRefGoogle Scholar
  50. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524PubMedCrossRefGoogle Scholar
  51. Sutovsky P, Moreno RD, Ramalho-Santos J, Cominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372PubMedCrossRefGoogle Scholar
  52. Takahata N, Maruyama T (1981) A mathematical model of extranuclear genes and the genetic variability maintained in a finite population. Genet Res 37:291–302CrossRefGoogle Scholar
  53. Thiéry M, Mugniéry D (1996) Interspecific rDNA restriction fragment length polymorphism in Globodera species, parasites of Solanaceous plants. Fundam Appl Nematol 19:471–479Google Scholar
  54. Triantaphyllou AC, Esbenshade PR (1990) Demonstration of multiple mating in Heterodera glycines with biochemical markers. J Nematol 22:452–456PubMedGoogle Scholar
  55. Vrain TC, Wakarchuk DA, Lévesque AC, Hamilton RI (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 15:563–573Google Scholar
  56. Wagner DB, Dong J, Carlson MR, Yanchuk AD (1991) Paternal leakage of mitochondrial DNA in Pinus. Theor Appl Genet 82:510–514CrossRefGoogle Scholar
  57. Zhao XB, Chu MX, Li N, Wu CX (2001) Paternal inheritance of mitochondrial DNA in the sheep (Ovine aries). Sci China Ser C 44:321–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Angelique H. Hoolahan
    • 1
  • Vivian C. Blok
    • 2
  • Tracey Gibson
    • 1
  • Mark Dowton
    • 1
  1. 1.School of Biological SciencesUniversity of WollongongWollongongAustralia
  2. 2.Cell and Molecular SciencesJames Hutton InstituteDundeeUK

Personalised recommendations