Advertisement

Genetica

, 139:855 | Cite as

Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian

  • D. Aurelle
  • J.-B. Ledoux
  • C. Rocher
  • P. Borsa
  • A. Chenuil
  • J.-P. Féral
Article

Abstract

The red coral Corallium rubrum (Cnidaria, Octocorallia) is an exploited, long-lived sessile species from the Mediterranean Sea and the adjacent coastline in the Atlantic Ocean. Surveys of genetic variation using microsatellites have shown that populations of C. rubrum are characterized by strong differentiation at the local scale but a study of the phylogeography of this species was still lacking. Here, we used seven polymorphic microsatellite loci, together with sequence data from an intron of the elongation factor 1 (EF1) gene, to investigate the genetic structure of C. rubrum across its geographical range in the western Mediterranean Sea and in the Adriatic Sea. The EF1 sequences were also used to analyse the consequences of demographic fluctuations linked with past environmental change. Clustering analysis with microsatellite loci highlighted three to seven genetic groups with the distinction of North African and Adriatic populations; this distinction appeared significant with AMOVA and differentiation tests. Microsatellite and EF1 data extended the isolation by distance pattern previously observed for this species at the western Mediterranean scale. EF1 sequences confirmed the genetic differentiation observed between most samples with microsatellites. A statistical parsimony network of EF1 haplotypes provided no evidence of high sequence divergence among regions, suggesting no long-term isolation. Selective neutrality tests on microsatellites and EF1 were not significant but should be interpreted with caution in the case of EF1 because of the low sample sizes for this locus. Our results suggest that recent Quaternary environmental fluctuations had a limited impact on the genetic structure of C. rubrum.

Keywords

Red coral Phylogeography Genetic structure EPIC Microsatellites 

Notes

Acknowledgments

We thank Joaquim Garrabou, Olivier Bianchimani, Christian Marschal, Pierre Chevaldonné, Frédéric Zuberer, Roland Graille and Thierry Pérez for providing samples and Didier Forcioli and Helmut Zibrowius for useful comments. We thank Charlotte Roby, Kenza Mokhtar-Jamaï, Emmanuelle Renard, Carole Borchiellini, Emilie Egea, Gwilherm Penant, Eve Gazave and Pascal Lapébie for their help in the laboratory. This work was funded by the French ANR (National Research Agency) in the Medchange program (www.medchange.org). This was also part of the EPIC project in the European Union Network of Excellence Marine Genomics. Some samples were obtained through the GBIRM project in the European Union Network of Excellence MARBEF. J.-B.L’s PhD was funded by the Région Provence Alpes Côte d’Azur. Two anonymous reviewers helped us to improve previous versions of this article.

Supplementary material

10709_2011_9589_MOESM1_ESM.doc (984 kb)
Supplementary material 1 (DOC 984 kb)

References

  1. Abbiati M, Santangelo G, Novelli S (1993) Genetic variation within and between two Tyrrhenian populations of the Mediterranean alcyonarian Corallium rubrum. Mar Ecol Prog Ser 95:245–250CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Bahri-Sfar L, Lemaire C, Ben Hassine OK, Bonhomme F (2000) Fragmentation of sea bass populations in the western and eastern mediterranean as revealed by microsatellite polymorphism. Proc R Soc Lond B 267:929–935CrossRefGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). http://www.genetix.univ-montp2.fr/genetix/genetix.htm
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—A practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300Google Scholar
  6. Borsa P, Naciri M, Bahri L, Chikhi L, Garcia de Leon FJ, Kotoulas G, Bonhomme F (1997) Intraspecific zoogeography of the Mediterranean: population genetic analysis on sixteen atlanto-mediterranean species (fish and invertebrates). Vie Milieu 47:295–305Google Scholar
  7. Calderón I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197CrossRefGoogle Scholar
  8. Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics 163:966–983Google Scholar
  9. Chaoui L, Hichem Kara M, Quignard J-P, Faure E, Bonhomme F (2009) Forte différenciation génétique de la daurade Sparus aurata (L., 1758) entre les deux rives de la Méditerranée occidentale. C R Biol 332:329–335PubMedCrossRefGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  11. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  12. Costantini F, Abbiati M (2006) Development of microsatellite markers for the Mediterranean gorgonian coral Corallium rubrum. Mol Ecol Notes 6:521–523CrossRefGoogle Scholar
  13. Costantini F, Fauvelot C, Abbiati M (2007a) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar Ecol Prog Ser 340:109–119CrossRefGoogle Scholar
  14. Costantini F, Fauvelot C, Abbiati M (2007b) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol 16:5168–5182PubMedCrossRefGoogle Scholar
  15. Costantini F, Taviani M, Remia A, Pintus E, Schembri J, Abbiati M (2010) Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar Ecol 31:261–269CrossRefGoogle Scholar
  16. del Gaudio D, Fortunato G, Borriello M, Gili JM, Buono P, Calcagno G, Salvatore F, Sacchetti L (2005) Genetic typing of Corallium rubrum. Mar Biotech 6:511–515CrossRefGoogle Scholar
  17. Duran S, Giribet G, Turon X (2004) Phylogeographical history of the sponge Crambe crambe (porifera, poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122PubMedCrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  20. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  21. Eytan R, Hayes M, Arbour-Reily P, Miller M, Hellberg M (2009) Nuclear sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol Ecol 18:2375–2389PubMedCrossRefGoogle Scholar
  22. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  23. Faure B, Bierne N, Tanguy A, Bonhomme F, Jollivet D (2007) Evidence for a slightly deleterious effect of intron polymorphisms at the EF1α gene in the deep-sea hydrothermal vent bivalve bathymodiolus. Gene 406:99–107PubMedGoogle Scholar
  24. Faure M, David P, Bonhomme F, Bierne N (2008) Genetic hitchhiking in a subdivided population of Mytilus edulis. BMC Evol Biol 8:164PubMedCrossRefGoogle Scholar
  25. Féral JP (2002) How useful are the genetic markers in attempts to understand and manage biodiversity? J Exp Mar Biol Ecol 268:121–145CrossRefGoogle Scholar
  26. Frantz A, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  27. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  28. Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978CrossRefGoogle Scholar
  29. Garrabou J, Coma R, Bensoussan N, Chevaldonné P, Cigliano M et al (2009) Mass mortality in NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103CrossRefGoogle Scholar
  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  31. Hayes A, Kucera M, Kallel N, Sbaffi L, Rohling EJ (2005) Glacial mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quat Sci Rev 24:999–1016CrossRefGoogle Scholar
  32. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  33. Jensen J, Bohonak A, Kelley S (2005) Isolation by distance, web service. BMC Genet 6:1–6CrossRefGoogle Scholar
  34. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  35. Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632PubMedCrossRefGoogle Scholar
  36. Lambeck K, Bard E (2000) Sea-level change along the French Mediterranean coast for the past 30 000 years. Earth Planet Sci Lett 175:203–222CrossRefGoogle Scholar
  37. Ledoux JB, Mokthar-Jamaï K, Roby C, Féral JP, Garrabou J, Aurelle D (2010a) Genetic survey of shallow populations of the Mediterranean red coral (Corallium rubrum (Linnaeus, 1758)): new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol Ecol 19:675–690PubMedCrossRefGoogle Scholar
  38. Ledoux JB, Garrabou J, Bianchimani O, Drap P, Féral JP, Aurelle D (2010b) Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol 19:4204–4216CrossRefGoogle Scholar
  39. Li N, Stephens M (2003) Modelling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165:2213–2233PubMedGoogle Scholar
  40. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  41. Maggs CA, Castilho R, Foltz D, Henzler C, Taimour Jolly M, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F, Wares J (2008) Evalutating signatures of glacial refugia for north atlantic benthic marine taxa. Ecology 89:S108–S122PubMedCrossRefGoogle Scholar
  42. Marko P, Hoffman J, Emme S, McGovern T, Keever C, Cox L (2010) The “expansion-contraction” model of pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 19:146–169PubMedCrossRefGoogle Scholar
  43. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  44. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  45. Orloci L (1978) Multivariate analysis in vegetation research. Dr W Junk BV, The HagueGoogle Scholar
  46. Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444PubMedCrossRefGoogle Scholar
  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  48. Petit RJ, Aguinagalde I, de Beaulieu J, Bittkau C, Brewer S, Cheddadi R et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:15S63–15S1565CrossRefGoogle Scholar
  49. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503CrossRefGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  51. Pritchard J, Wen X, Falush D (2007) Documentation for structure software: version 2.2Google Scholar
  52. Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567PubMedCrossRefGoogle Scholar
  53. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  54. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  55. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  56. Ruggiero M, Turk R, Procaccini G (2002) Genetic identity and homozygosity in north-adriatic populations of Posidonia oceanica: an ancient, post-glacial clone? Cons Gen 3:71–74CrossRefGoogle Scholar
  57. Santangelo G, Bramanti L, Iannelli M (2007) Population dynamics and conservation biology of the over-exploited Mediterranean red coral. J Theo Biol 244:416–423CrossRefGoogle Scholar
  58. Serra IA, Innocenti AM, Di Maida G, Calvo S, Migliaccio M, Zambianchi E et al (2010) Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow. Mol Ecol 19:557–568PubMedCrossRefGoogle Scholar
  59. Städler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P (2009) The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 182:205–216PubMedCrossRefGoogle Scholar
  60. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Gen 76:449–462CrossRefGoogle Scholar
  61. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Gen 68:978–989CrossRefGoogle Scholar
  62. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  63. Tatarenkov A, Healey CIM, Avise JC (2010) Microgeographic population structure of green swordail fish: genetic differentiation despite abundant migration. Mol Ecol 19:257–268PubMedCrossRefGoogle Scholar
  64. Thiede J (1978) A glacial Mediterranean. Nature 276:680–683CrossRefGoogle Scholar
  65. Vertino A, Zibrowius H, Taviani M (2010) Fossil ancestors of family Coralliidae in the Mediterranean Sea. In: Bussoletti E, Cottingham D, Bruckner A, Roberts G and Sandulli R (eds) Proceedings of the international workshop on red coral science, management, and trade: lessons from the Mediterranean. NOAA Technical Memorandum CRCP-13, Silver Spring, MD, pp 94–98Google Scholar
  66. Viard F, Franck P, Dubois M, Estoup A, Jarne P (1998) Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species. J Mol Evol 47:42–51PubMedCrossRefGoogle Scholar
  67. Vighi M (1972) Etude sur la reproduction du Corallium rubrum (L.). Vie et milieu 23:21–32Google Scholar
  68. Weinberg S (1979) The light-dependent behaviour of planula larvae of Eunicella singularis and Corallium rubrum and its implication for octocorallian ecology. Bijdragen tot de Dierkunde 49:16–30Google Scholar
  69. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  70. Zibrowius H, Monteiro Marques V, Grasshoff M (1984) La répartition du Corallium rubrum dans l’Atlantique (Cnidaria: Anthozoa: Gorgonaria). Téthys 11:163–170Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Aurelle
    • 1
  • J.-B. Ledoux
    • 1
    • 2
  • C. Rocher
    • 1
  • P. Borsa
    • 3
  • A. Chenuil
    • 1
  • J.-P. Féral
    • 1
  1. 1.CNRS UMR 6540 DIMAR, Centre d’Océanologie de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Institut de Ciències del Mar CSICBarcelonaSpain
  3. 3.Institut de recherche pour le développement, UR 227MontpellierFrance

Personalised recommendations