Genetica

, 139:823 | Cite as

Cytogenetic characterization and mapping of rDNAs, core histone genes and telomeric sequences in Venerupis aurea and Tapes rhomboides (Bivalvia: Veneridae)

  • Joana Carrilho
  • Concepción Pérez-García
  • Alexandra Leitão
  • Isabel Malheiro
  • Juan J. Pasantes
Article

Abstract

We describe the chromosomal location of GC-rich regions, 28S and 5S rDNA, core histone genes, and telomeric sequences in the veneroid bivalve species Venerupis aurea and Tapes (Venerupis) rhomboides, using fluorochrome staining with propidium iodide, DAPI and chromomycin A3 (CMA) and fluorescent in situ hybridization (FISH). DAPI dull/CMA bright bands were coincident with the chromosomal location of 28S rDNA in both species. The major rDNA was interstitially clustered at a single locus on the short arms of the metacentric chromosome pair 5 in V. aurea, whereas in T. rhomboides it was subtelomerically clustered on the long arms of the subtelocentric chromosome pair 17. 5S rDNA also was a single subtelomeric cluster on the long arms of subtelocentric pair 17 in V. aurea and on the short arms of the metacentric pair 9 in T. rhomboides. Furthermore, V. aurea showed four telomeric histone gene clusters on three metacentric pairs, at both ends of chromosome 2 and on the long arms of chromosomes 3 and 8, whereas histone genes in T. rhomboides clustered interstitially on the long arms of the metacentric pair 5 and proximally on the long arms of the subtelocentric pair 12. Double and triple FISH experiments demonstrated that rDNA and H3 histone genes localized on different chromosome pairs in the two clam species. Telomeric signals were found at both ends of every single chromosome in both species. Chromosomal location of these three gene families in two species of Veneridae provides a clue to karyotype evolution in this commercially important bivalve family.

Keywords

Venerupis aurea Tapes rhomboides Fluorescent in situ hybridization Ribosomal genes Core histone genes Telomeric sequences 

Notes

Acknowledgments

We wish to thank P. Alvariño and N. Santamaría for their technical assistance and A. Simón and S. Pereira for kindly providing the carpet shells. This work was funded in part by grants from Xunta de Galicia and Fondos FEDER (PGIDIT03PXIC30102PN; 08MMA023310PR; Grupos de Referencia Competitiva, 2010/80) and Universidade de Vigo (64102C124). This work is part of a PhD project, financed by Fundação para a Ciência e Tecnologia (FCT)—Ministério da Ciência, Tecnologia e Ensino Superior, reference SFRH/BD/35872/2007. This study was also partially supported by the “Programa Ciência 2007” and the project PTDC/MAR/72163/2006 of the FCT.

References

  1. Albig W, Warthorst U, Drabent B, Prats E, Cornudella L, Doenecke D (2003) Mytilus edulis core histone genes are organized in two clusters devoid of linker histone genes. J Mol Evol 56:597–606PubMedCrossRefGoogle Scholar
  2. Borsa P, Thiriot-Quiévreux C (1990) Karyological and allozymic characterization of Ruditapes philippinarum, R. aureus and R. decussatus (Bivalvia, Veneridae). Aquaculture 90:209–227CrossRefGoogle Scholar
  3. Canapa A, Marota I, Rollo F, Olmo E (1996) Phylogenetic analysis of Veneridae (Bivalvia): comparison of molecular and paleontological data. J Mol Evol 43:517–522PubMedCrossRefGoogle Scholar
  4. Canapa A, Schiaparelli S, Marota I, Barucca M (2003) Molecular data from the 16S rRNA gene for the phylogeny of Veneridae. Mar Biol 142:1125–1130Google Scholar
  5. Cross I, Vega L, Rebordinos L (2003) Nucleolar organizing region in Crassostrea angulata: chromosomal location and polymorphism. Genetica 119:65–74PubMedCrossRefGoogle Scholar
  6. Cross I, Díaz E, Sánchez I, Rebordinos L (2005) Molecular and cytogenetic characterization of Crassostrea angulata chromosomes. Aquaculture 247:135–144CrossRefGoogle Scholar
  7. Drabent B, Kim JS, Albig W, Prats E, Cornudella L, Doenecke D (1999) Mytilus edulis histone gene clusters containing only H1 genes. J Mol Evol 49:645–655PubMedCrossRefGoogle Scholar
  8. Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2002) Molecular and evolutionary analysis of mussel histone genes (Mytilus spp): possible evidence of an “orphon origin” for H1 histone genes. J Mol Evol 55:272–283PubMedCrossRefGoogle Scholar
  9. Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of a five histone genes containing an H1 subtype whit “orphon” features. J Mol Evol 58:131–144PubMedCrossRefGoogle Scholar
  10. Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J (2009) Long-term evolution of histone families: old notions and new insights into their mechanisms of diversification across eukaryotes. In: Pontarotti P (ed) Evolutionary biology. Springer, Berlin, pp 139–162CrossRefGoogle Scholar
  11. Fang BL, De Baere R, Vandenberghe A, De Wachter R (1982) Sequences of three molluscan 5S ribosomal RNAs confirm the validity of a dynamic secondary structure model. Nucleic Acids Res 10:4679–4685PubMedCrossRefGoogle Scholar
  12. FAO (2008) FAO yearbook. Fishery and aquaculture statistics 2006. FAO, Rome, p 26Google Scholar
  13. Fernández-Tajes J, González-Tizón A, Martínez-Lage A, Méndez J (2003) Cytogenetics of the razor clam Solen marginatus (Mollusca. Bivalvia: Solenidae). Cytogenet Genome Res 101:43–46PubMedCrossRefGoogle Scholar
  14. Fernández-Tajes J, Martínez-Lage A, Freire R, Guerra A, Méndez J, González-Tizón AM (2008) Genome sizes and karyotypes in the razor clams Ensis arcuatus (Jeffreys, 1985) and E. siliqua (Linnaeus, 1758). Cah Biol Mar 49:79–85Google Scholar
  15. Gajardo G, Parraguez M, Colihueque N (2002) Karyotype analysis and chromosome banding of the Chilean-Peruvian scallop Argopecten purpuratus (Lamarck, 1819). J Shellfish Res 21:585–590Google Scholar
  16. Giribet G, Distel D (2003) Bivalve phylogeny and molecular data. In: Lydeard C, Lindberg DR (eds) Molecular systematics and phylogeography of molluscs. Smithsonian Books, Washington, DC, pp 45–90Google Scholar
  17. González-Tizón AM, Martínez-Lage A, Rego I, Ausio J, Méndez J (2000) DNA content, karyotypes, and chromosomal location of 18S-5.8S-28S ribosomal loci in some species of bivalve mollusks from the Pacific Canadian coast. Genome 43:1065–1072PubMedCrossRefGoogle Scholar
  18. Guo X, Wang Y, Xu Z (2007) Genomic analyses using fluorescence in situ hybridization. In: Liu Z (ed) Aquaculture genome technologies. Blackwell Publishing, Oxford, pp 289–311CrossRefGoogle Scholar
  19. Huang X, Hu X, Hu J, Zhang L, Wang S, Lu W, Bao Z (2007a) Mapping of ribosomal DNA and (TTAGGG)n telomeric sequence by FISH in the bivalve Patinopecten yessoensis (Jay, 1857). J Moll Stud 73:393–398CrossRefGoogle Scholar
  20. Huang X, Hu J, Hu X, Zhang G, Zhang L, Wang S, Lu W, Bao Z (2007b) Cytogenetic characterization of the bay scallop, Argopecten irradians irradians, by multiple staining techniques and fluorescence in situ hybridization. Genes Genet Syst 82:257–263PubMedCrossRefGoogle Scholar
  21. Hurtado N, Pasantes JJ (2005) Surface spreading of synaptonemal complexes in the clam Dosinia exoleta (Mollusca, Bivalvia). Chromosome Res 13:575–580PubMedCrossRefGoogle Scholar
  22. Hurtado N, Pérez-García C, Morán P, Pasantes JJ (2011) Genetic and cytological evidence of hybridization between native Ruditapes decussatus and introduced Ruditapes philippinarum (Mollusca, Bivalvia, Veneridae) in NW Spain. Aquaculture 311:123–128CrossRefGoogle Scholar
  23. Insua A, Méndez J (1998) Physical mapping and activity of ribosomal RNA genes in mussel Mytilus galloprovincialis. Hereditas 128:189–194PubMedCrossRefGoogle Scholar
  24. Insua A, Thiriot-Quiévreux C (1992) Karyotypes of Cerastoderma edule, Venerupis pullastra and Venerupis rhomboides (Bivalvia, Veneroida). Aquat Living Resour 5:1–8CrossRefGoogle Scholar
  25. Insua A, López-Piñón MJ, Méndez J (1998) Characterization of Aequipecten opercularis (Bivalvia: Pectinidae) chromosomes by different staining techniques and fluorescent in situ hybridization. Genes Genet Syst 73:193–200PubMedCrossRefGoogle Scholar
  26. Insua A, Freire R, Méndez J (1999) The 5S rDNA of the bivalve Cerastoderma edule: nucleotide sequence of the repeat unit and chromosomal location relative to 18S-28S rDNA. Genet Sel Evol 31:509–518CrossRefGoogle Scholar
  27. Insua A, Freire R, Ríos J, Méndez J (2001) The 5S rDNA of mussels Mytilus galloprovincialis and M. edulis: sequence, variation and chromosomal location. Chromosome Res 9:495–505PubMedCrossRefGoogle Scholar
  28. Insua A, López-Piñón MJ, Freire R, Méndez J (2006) Karyotype and chromosomal location of 18S-28S and 5S ribosomal DNA in the scallops Pecten maximus and Mimachlamys varia (Bivalvia: Pectinidae). Genetica 126:291–301PubMedCrossRefGoogle Scholar
  29. Kappner I, Bieler R (2006) Phylogeny of venus clams (Bivalvia: Venerinae) as inferred from nuclear and mitochondrial gene sequences. Mol Phylogenet Evol 40:317–331PubMedCrossRefGoogle Scholar
  30. Leitão A, Chaves R (2008) Banding for chromosomal identification in bivalves: a 20-year history. In: Russo R (ed) Aquaculture 1. Dynamic biochemistry, process biotechnology and molecular biology 2 (special issue 1). Global Science Books, pp 44–49Google Scholar
  31. Li C, Song L, Zhao J, Zou H, Su J, Zhang H (2006) Genomic organization, nucleotide sequence analysis of the core histone genes cluster in Chlamys farreri and molecular evolution assessment of the H2A and H2B. DNA Seq 17:440–451PubMedGoogle Scholar
  32. López-Piñón MJ, Insua A, Méndez J (2005) Chromosome analysis and mapping of ribosomal genes by one and two-color fluorescent in situ hybridization in Hinnites distortus (Bivalvia: Pectinidae). J Hered 96:52–58PubMedCrossRefGoogle Scholar
  33. Martínez A, Mariñas L, González-Tizón A, Méndez J (2002) Cytogenetics characterization of Donax trunculus (Bivalvia, Donacidae) by means of karyotyping, fluorochrome banding and fluorescent in situ hybridization. J Moll Stud 68:393–396CrossRefGoogle Scholar
  34. Martínez-Expósito MJ, Méndez J, Pasantes JJ (1997) Analysis of NORs and NOR-associated heterochromatin in the mussel Mytilus galloprovincialis Lmk. Chromosome Res 5:268–273PubMedCrossRefGoogle Scholar
  35. Odierna G, Aprea G, Barucca M, Canapa A, Capriglione T, Olmo E (2006) Karyology of the Antarctic scallop Adamussium colbecki, with some comments on the karyological evolution of pectinids. Genetica 127:341–349PubMedCrossRefGoogle Scholar
  36. Pérez-García C, Cambeiro JM, Morán P, Pasantes JJ (2010a) Chromosomal mapping of rDNAs, core histone genes and telomeric sequences in Perumytilus purpuratus (Bivalvia: Mytilidae). J Exp Mar Biol Ecol 395:199–205CrossRefGoogle Scholar
  37. Pérez-García C, Guerra-Varela J, Morán P, Pasantes JJ (2010b) Chromosomal mapping of rRNA genes, core histone genes and telomeric sequences in Brachidontes puniceus and Brachidontes rodriguezi (Bivalvia: Mytilidae). BMC Genet 11:109PubMedCrossRefGoogle Scholar
  38. Petrović V, Pérez-García C, Pasantes JJ, Šatović E, Prats E, Plohl M (2008) A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin. Cytogenet Genome Res 124:63–71Google Scholar
  39. Plohl M, Prats E, Mártínez-Lage A, González-Tizón A, Méndez J, Cornudella L (2002) Telomeric localization of the vertebrate-type hexamer repeat, (TTAGGG)n, in the wedgeshell clam Donax trunculus and other marine invertebrate genomes. J Biol Chem 277:19839–19846PubMedCrossRefGoogle Scholar
  40. Thiriot-Quiévreux C (1994) Advances in cytogenetics of aquatic organisms. In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman & Hall, London, pp 369–388Google Scholar
  41. Thiriot-Quiévreux C (2002) Review of the literature on bivalve cytogenetics in the last ten years. Cah Biol Mar 43:17–26Google Scholar
  42. Torreiro A, Martínez-Expósito MJ, Trucco MI, Pasantes JJ (1999) Cytogenetics in Brachidontes rodriguezi d’Orb (Bivalvia, Mytilidae). Chromosome Res 7:49–55PubMedCrossRefGoogle Scholar
  43. Vitturi R, Gianguzza P, Colomba MS, Riggio S (2000) Cytogenetic characterization of Brachidontes pharaonis (Fisher P., 1870): karyotype, banding and fluorescent in situ hybridization (FISH). Ophelia 52:213–220Google Scholar
  44. Wang Y, Guo X (2004) Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution. Biol Bull 207:247–256PubMedCrossRefGoogle Scholar
  45. Wang Y, Guo X (2007) Chromosomal mapping of major ribosomal rRNA genes in the hard clam (Mercenaria mercenaria) using fluorescent hybridization. Mar Biol 150:1183–1189CrossRefGoogle Scholar
  46. Wang Y, Guo X (2008) Chromosomal mapping of the major ribosomal RNA genes in the dwarf surfclam (Mulinia lateralis Say). J Shellfish Res 27:307–311CrossRefGoogle Scholar
  47. Wang Y, Xu Z, Guo X (2004) Differences in the rDNA-bearing chromosome divide the Asian-Pacific and Atlantic species of Crassostrea (Bivalvia, Mollusca). Biol Bull 206:46–54PubMedCrossRefGoogle Scholar
  48. Wang YP, Xu Z, Guo X (2005) Chromosomal mapping of 5S ribosomal RNA genes in eastern oyster, Crassostrea virginica Gmelin by fluorescence in situ hybridization. J Shellfish Res 24:959–964Google Scholar
  49. White TJ, Burms T, Lee S, Taylor JW (1990) Amplification and direct sequences of fungal ribosomal RNA genes for phylogenetics. In: Inmus MA, Guelfand DH, Sminsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  50. Winnepenninckx B, Backeljau T, Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407PubMedCrossRefGoogle Scholar
  51. Zhang Q, Yu G, Cooper RK, Tiersch TR (1999) Chromosomal location by fluorescent in situ hybridization of the 28S ribosomal RNA gene of the eastern oyster. J Shellfish Res 18:431–435Google Scholar
  52. Zhang L, Bao Z, Wang S, Huang X, Hu J (2007) Chromosome rearrangements in Pectinidae (Bivalvia; Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops. Genetica 130:193–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Joana Carrilho
    • 1
    • 2
    • 3
  • Concepción Pérez-García
    • 1
  • Alexandra Leitão
    • 4
  • Isabel Malheiro
    • 2
    • 3
  • Juan J. Pasantes
    • 1
  1. 1.Department of Biochemistry, Genetics and ImmunologyUniversity of VigoVigoSpain
  2. 2.Cytogenetics Laboratory, Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
  3. 3.Centro de Estudos de Ciências Animais (CECA/ICETA)University of PortoPortoPortugal
  4. 4.Instituto Nacional de Recursos Biológicos (INRB/L-IPIMAR)OlhãoPortugal

Personalised recommendations