Genetica

, 139:685 | Cite as

Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster

SI - GOS

Abstract

Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging.

Keywords

mtDNA Selection Heteroplasmy Genetic drift Insertion-deletion Population cage 

Notes

Acknowledgments

This work was motivated by the fortuitous discovery of mtDNA length heteroplasmy in crickets while I was learning how to use mtDNA to study the Gryllus hybrid zone in Rick Harrisons’ lab (Harrison et al. 1985). The microcosm of competing mtDNAs in the cytoplasm seemed like too interesting a problem to pass up, even if it was far afield from the ecological genetics that was the focus of my PhD thesis. It was an exciting time to be in Rick’s lab, and I owe much to Rick in making graduate school seem like summer science camp. The cricket heteroplasmy raised many questions and it seemed logical to do a population cage experiment in Drosophila, which was initiated as a postdoc in Dick Lewontin’s lab in 1988. From there, flies seemed like the best system to study how mtDNA variation is related to organismal fitness, and thus another person was sucked into the Drosophila model. I would like to thank W. Anderson, E. Arnason, D. Dykhuisen, A. MacRae, T. Prout for helpful comments and K. Zvonar for help with the frequency estimates. An anonymous reviewer provided many helpful comments that significantly improved the manuscript. Supported by National Research Service Award GM12357 to DMR and Grant GM21179 to R. C. Lewontin from the NIH, and grants DEB-9120293 from the NSF, grant GM067862 from the NIH and grant AG027849 from the NIA to DMR.

Supplementary material

10709_2011_9576_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics 132:211–220PubMedGoogle Scholar
  2. Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci 312(1154):325–342PubMedCrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, HarvardGoogle Scholar
  4. Ballard JW, James AC (2004) Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proc Biol Sci 271(1544):1197–1201. doi: 10.1098/rspb.2004.27096QVXE53Q0031KLN0 PubMedCrossRefGoogle Scholar
  5. Ballard JWO, Kreitman M (1994) Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138(3):757–772PubMedGoogle Scholar
  6. Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36:621–642. doi: 10.1146/Annurev.Ecolsys.36.091704.175513 CrossRefGoogle Scholar
  7. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312(5773):570–572. doi: 10.1126/science.1122033 PubMedCrossRefGoogle Scholar
  8. Bender W, Spierer P, Hogness DS (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168(1):17–33PubMedCrossRefGoogle Scholar
  9. Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148PubMedCrossRefGoogle Scholar
  10. Brown JR, Beckenbach AT, Smith MJ (1992) Mitochondrial DNA length variation and hetroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics 132:221–228PubMedGoogle Scholar
  11. Castagna AE, Addis J, McInnes RR, Clarke JT, Ashby P, Blaser S, Robinson BH (2007) Late onset Leigh syndrome and ataxia due to a T to C mutation at bp 9, 185 of mitochondrial DNA. Am J Med Genet A 143A(8):808–816. doi: 10.1002/ajmg.a.31637 PubMedCrossRefGoogle Scholar
  12. Clark AG, Lyckegaard EM (1988) Natural selection with nuclear and cytoplasmic transmission. III. Joint analysis of segregation and mtDNA in Drosophila melanogaster. Genetics 118 (3):471–481Google Scholar
  13. Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101(29):10726–10731. doi: 10.1073/pnas.04036491010403649101 PubMedCrossRefGoogle Scholar
  14. Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC (2010) Systemic mitochondrial dysfunction and the etiology of alzheimer’s disease and down syndrome dementia. J Alzheimers Dis 20(Suppl 2):S293–S310. doi: 10.3233/JAD-2010-100351 Google Scholar
  15. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40(2):249–254. doi: 10.1038/ng.2007.63 PubMedCrossRefGoogle Scholar
  16. Crow JF, Morton NE (1955) Measurement of gene frequency drift in small populations. Evolution 9:202–214CrossRefGoogle Scholar
  17. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  18. Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23(10):546–554. doi: 10.1016/j.tree.2008.05.011 PubMedCrossRefGoogle Scholar
  19. Dykhuizen D, Hartl DL (1980) Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics 96(4):801–817Google Scholar
  20. Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47(2):150–168PubMedGoogle Scholar
  21. Fauron CM, Wolstenholme DR (1976) Structural heterogeneity of mitochondrial DNA molecules within the genus Drosophila. Proc Natl Acad Sci USA 73(10):3623–3627PubMedCrossRefGoogle Scholar
  22. Fauron CM, Wolstenholme DR (1980) Intraspecific diversity of nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Nucleic Acids Res 8(22):5391–5410PubMedCrossRefGoogle Scholar
  23. Fos M, Dominguez MA, Latorre A, Moya A (1990) Mitochondrial DNA evolution in experimental populations of Drosophila subobscura. Proc Natl Acad Sci USA 87(11):4198–4201PubMedCrossRefGoogle Scholar
  24. Hale LR, Singh RS (1986) Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of Drosophila melanogaster. Proc Nat Acad Sci USA 78:8813–8817CrossRefGoogle Scholar
  25. Hale LR, Singh RS (1991) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics 129(1):103–117Google Scholar
  26. Harrison RG (1989) Mitochondrial DNA as a genetic marker in population and evolutionary genetics. Trends Ecol Evol 4:6–11PubMedCrossRefGoogle Scholar
  27. Harrison RG, Rand DM, Wheeler WC (1985) Mitochondrial DNA size variation within individual crickets. Science 228(4706):1446–1448. doi: 10.1126/science.228.4706.1446 PubMedCrossRefGoogle Scholar
  28. Hutter CM, Rand DM (1995) Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics 140(2):537–548Google Scholar
  29. James AC, Ballard JWO (2003) Mitochondrial genotype affects fitness in D. simulans (in press)Google Scholar
  30. Kann LM, Rosenblum EB, Rand DM (1998) Aging, mating, and the evolution of mtDNA heteroplasmy in Drosophila melanogaster. Proc Natl Acad Sci USA 95(5):2372–2377PubMedCrossRefGoogle Scholar
  31. Kilpatrick ST, Rand DM (1995a) Conditional hitchhiking of mitochondrial DNA: Frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics 141:1113–1124PubMedGoogle Scholar
  32. Kilpatrick ST, Rand DM (1995b) Fitness of Drosophila melanogaster mitochondrial DNA variants depends on nuclear genetic background. Genetics (submitted)Google Scholar
  33. Koonin EV, Wolf YI (2009) The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biol Direct 4:33. doi: 10.1186/1745-6150-4-33 PubMedCrossRefGoogle Scholar
  34. Lewis DL, Farr CL, Farquhar AL, Kaguni LS (1994) Sequence, organization, and evolution of the A + T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol 11:523–538PubMedGoogle Scholar
  35. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18CrossRefGoogle Scholar
  36. Lewontin RC, Dunn LC (1960) The evolutionary dynamics of a polymorphism in the house mouse. Genetics 45(6):705–722PubMedGoogle Scholar
  37. Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185. doi: 10.1146/annurev.genet.40.110405.090613 PubMedCrossRefGoogle Scholar
  38. MacRae AF, Anderson WW (1988) Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics 120(2):485–494PubMedGoogle Scholar
  39. Meiklejohn CD, Montooth KL, Rand DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23(6):259–263. doi: 10.1016/j.tig.2007.03.008 PubMedCrossRefGoogle Scholar
  40. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779PubMedCrossRefGoogle Scholar
  41. Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glemin S (2008) Determination of mitochondrial genetic diversity in mammals. Genetics 178(1):351–361. doi: 10.1534/genetics.107.073346 PubMedCrossRefGoogle Scholar
  42. Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98(3):625–640PubMedGoogle Scholar
  43. Oliveira MT, Kaguni LS (2009) Comparative purification strategies for Drosophila and human mitochondrial DNA replication proteins: DNA polymerase gamma and mitochondrial single-stranded DNA-binding protein. Methods Mol Biol 554:37–58. doi: 10.1007/978-1-59745-521-3_3 PubMedCrossRefGoogle Scholar
  44. Rand DM (1993) Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37:281–295PubMedCrossRefGoogle Scholar
  45. Rand DM (1994) Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9(4):125–131PubMedCrossRefGoogle Scholar
  46. Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448CrossRefGoogle Scholar
  47. Rand DM, Harrison RG (1986) Mitochondrial DNA transmission genetics in crickets. Genetics 114(3):955–970PubMedGoogle Scholar
  48. Rand DM, Harrison RG (1989) Molecular population genetics of mtDNA size variation in crickets. Genetics 121:551–569PubMedGoogle Scholar
  49. Rand DM, Dorfsman ML, Kann LM (1994) Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics 138:741–756PubMedGoogle Scholar
  50. Rand DM, Clark AG, Kann LM (2001) Sexually antagonistic cytonuclear fitness effects in Drosophila melanogaster. Genetics 159:173–187PubMedGoogle Scholar
  51. Solignac M, Genermont J, Monnerot M, Mounolou J-C (1984) Genetics of mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. Mol Gen Genet 197:183–188CrossRefGoogle Scholar
  52. Solignac M, Monnerot M, Mounolou J-C (1986) Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophilia. J Mol Evol 23:31–40PubMedCrossRefGoogle Scholar
  53. Solignac M, Genermont J, Monnerot M, Mounolou J-C (1987) Drosophila mitochondrial genetics: evolution of heteroplasmy through germ line cell divisions. Genetics 117:687–696PubMedGoogle Scholar
  54. Taylor DR, Zeyl C, Cooke E (2002) Conflicting levels of selection in the accumulation of mitochondrial defects in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99(6):3690–3694. doi: 10.1073/pnas.072660299072660299 PubMedCrossRefGoogle Scholar
  55. Townsend JP, Rand DM (2004) Mitochondrial genome size variation in new world and old world populations of Drosophila melanogaster. Heredity 93(1):98–103. doi: 10.1038/sj.hdy.68004846800484 PubMedCrossRefGoogle Scholar
  56. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105(16):5980–5985. doi: 10.1073/pnas.0802224105 PubMedCrossRefGoogle Scholar
  57. Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40(12):1484–1488. doi: 10.1038/ng.258 PubMedCrossRefGoogle Scholar
  58. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi: 10.1146/annurev.genet.39.110304.095751 PubMedCrossRefGoogle Scholar
  59. Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821. doi: 10.1146/annurev.biochem.76.081205.150955 PubMedCrossRefGoogle Scholar
  60. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121(2):379–391PubMedGoogle Scholar
  61. Whittam TS, Clark AG, Stoneking M, Cann RL, Wilson AC (1986) Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proc Natl Acad Sci USA 83(24):9611–9615PubMedCrossRefGoogle Scholar
  62. Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton, New JerseyGoogle Scholar
  63. Wright S (1968) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, ChicagoGoogle Scholar
  64. Wynne-Edwards VC (1962) Animal dispersion in relation to social behavior. Oliver and Boyd, EdinburghGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Ecology and EvolutionBrown UniversityProvidenceUSA

Personalised recommendations