Genetica

, Volume 139, Issue 2, pp 199–207 | Cite as

Inactivation dates of the human and guinea pig vitamin C genes

Article

Abstract

The capacity to biosynthesize ascorbic acid has been lost in a number of species including primates, guinea pigs, teleost fishes, bats, and birds. This inability results from mutations in the GLO gene coding for L-gulono-γ-lactone oxidase, the enzyme responsible for catalyzing the last step in the vitamin C biosynthetic pathway. We analyzed available primate and rodent GLO gene sequences to determine their evolutionary history. We used a method based on sequence comparisons of lineages with and without functional GLO genes to calculate inactivation dates of 61 and 14 MYA for the primate and guinea pig genes, respectively. These estimates are consistent with previous phylogeny-based estimates. An analysis of transposable element distribution in the primate and rodent GLO sequences did not reveal conclusive evidence that illegitimate recombination between repeats has contributed to the loss of exons in the primate and guinea pig genes.

Keywords

Vitamin C L-gulono-γ-lactone oxidase GLO gene Unitary pseudogene Human Guinea pig 

Supplementary material

10709_2010_9537_MOESM1_ESM.pdf (40 kb)
Supplementary material 1 (PDF 39 kb)

References

  1. Bánhegyi G, Csala M, Braun L, Garzó T, Mandl J (1996) Ascorbate synthesis-dependent glutathione consumption in mouse liver. FEBS Lett 381:39–41CrossRefPubMedGoogle Scholar
  2. Birney EC, Jenness R, Ayaz KM (1976) Inability of bats to synthesise L-ascorbic acid. Nature 260:626–628CrossRefPubMedGoogle Scholar
  3. Burns JJ (1957) Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature 180:553CrossRefPubMedGoogle Scholar
  4. Challem JJ (1997) Did the loss of endogenous ascorbate propel the evolution of anthropoidea and Homo sapiens? Med Hypotheses 48:387–392CrossRefPubMedGoogle Scholar
  5. Challem JJ, Taylor EW (1998) Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radic Biol Med 25:130–132CrossRefPubMedGoogle Scholar
  6. Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182:1271–1272CrossRefPubMedGoogle Scholar
  7. Chaudhuri CR, Chatterjee IB (1969) L-ascorbic acid synthesis in birds: phylogenetic trend. Science 164:435–436CrossRefPubMedGoogle Scholar
  8. Chou H, Hayakawa T, Diaz S, Krings M, Indriati E, Leakey M, Paabo S, Satta Y, Takahata N, Varki A (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci USA 99:11736–11741CrossRefPubMedGoogle Scholar
  9. Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682CrossRefPubMedGoogle Scholar
  10. Cooper DN (1999) Human gene evolution. BIOS Scientific, OxfordGoogle Scholar
  11. Dabrowski K (1990) Gulonolactone oxidase is missing in teleost fish. The direct spectrophotometric assay. Biol Chem Hoppe Seyler 371:207–214PubMedGoogle Scholar
  12. Dabrowski K (1994) Primitive actinopterygian fishes are capable of ascorbic acid synthesis. Experimentia 50:745–748CrossRefGoogle Scholar
  13. Drew KL, Osborne PG, Frerichs KU, Hu Y, Koren RE, Hallenbeck JM, Rice ME (1999) Ascorbate and glutathione regulation in hibernating ground squirrels. Brain Res 851:1–8CrossRefPubMedGoogle Scholar
  14. Drouin G, Prat F, Ell M, Clarke G (1999) Detecting and characterizing gene conversions between multigene family members. Mol Biol Evol 16:1369–1390PubMedGoogle Scholar
  15. Echols N, Harrison P, Balasubramanian S, Luscombe NM, Bertone P, Zhang Z, Gerstein M (2002) Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. Nucleic Acids Res 30:2515–2523CrossRefPubMedGoogle Scholar
  16. Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Inc., Sunderland, MassachusettsGoogle Scholar
  17. Huchon D, Chevret P, Jordan U, Kilpatrick CW, Ranwez V, Jenkins PD, Brosius J, Schmitz J (2007) Multiple molecular evidences for a living mammalian fossil. Proc Natl Acad Sci USA 104:7495–7499CrossRefPubMedGoogle Scholar
  18. Hwang D, Lin T (2002) Effect of temperature on dietary vitamin C requirement and lipid in common carp. Comp Biochem Physiol B Biochem Mol Biol 131:1–7CrossRefPubMedGoogle Scholar
  19. Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35:97–112CrossRefPubMedGoogle Scholar
  20. Krasnov A, Reinisalo M, Pitkanen TI, Nishikimi M, Molsa H (1998) Expression of rat gene for L-gulono-gamma-lactone oxidase, the key enzyme of L-ascorbic acid biosynthesis, in guinea pig cells and in teleost fish rainbow trout (Oncorthynchus mykiss). Biochim Biophys Acta 1381:241–248PubMedGoogle Scholar
  21. Li W, Maeda N, Beck MA (2006) Vitamin C deficiency increases the lung pathology of influenza virus-infected Gulo -/- mice. J Nutr 136:2611–2626PubMedGoogle Scholar
  22. Linster CL, Van Schaftingen E (2007) Vitamin C biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22CrossRefPubMedGoogle Scholar
  23. Moreau R, Dabrowski K (2000) Biosynthesis of ascorbic acid by extant actinopterigians. J Fish Biol 57:733–745CrossRefGoogle Scholar
  24. Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639CrossRefPubMedGoogle Scholar
  25. Nakayama K, Ishida T (2006) Alu-mediated 100-kb deletion in the primate genome: the loss of the agouti signaling protein gene in the lesser apes. Genome Res 16:485–490CrossRefPubMedGoogle Scholar
  26. Nishikimi M, Kawai T, Yagi K (1992) Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. J Biol Chem 267(30):21967–21972PubMedGoogle Scholar
  27. Nishikimi M, Fukuyama R, Minoshiman I, Shimizux N, Yagis K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688PubMedGoogle Scholar
  28. Pace JK 2nd, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432CrossRefPubMedGoogle Scholar
  29. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173CrossRefPubMedGoogle Scholar
  30. Pascale E, Valle E, Furano A (1990) Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation. Proc Natl Acad Sci USA 87:9481–9485CrossRefPubMedGoogle Scholar
  31. Pauling L (1970) Evolution and the need for ascorbic acid. Proc Natl Acad Sci USA 67:1643–1648CrossRefPubMedGoogle Scholar
  32. Pollock JI, Mullin RJ (1987) Vitamin C biosynthesis in prosimians: evidence for the anthropoid affinity of tarsius. Am J Phys Anthropol 73:65–70CrossRefPubMedGoogle Scholar
  33. Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252CrossRefPubMedGoogle Scholar
  34. Ray DA, Pagan HJT, Thompson ML, Stevens RD (2007) Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol 24:632–639CrossRefPubMedGoogle Scholar
  35. Rowold DJ, Herrera RJ (2000) Alu elements and the human genome. Genetica 108:57–72CrossRefPubMedGoogle Scholar
  36. Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394CrossRefPubMedGoogle Scholar
  37. Szabó Z, Levi-Minzi SA, Christiano AM, Struminger C, Stoneking M, Batzer MA, Boyd CD (1999) Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J Mol Evol 49:664–671CrossRefPubMedGoogle Scholar
  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  39. Toth G, Deak G, Barta E, Kiss GB (2006) PLOTREP: a web tool for defragmentation and visual analysis of dispersed genomic repeats. Nucleic Acids Res 34:W708–W713CrossRefPubMedGoogle Scholar
  40. Toyohara H, Nakata T, Touhata K, Hashimoto H, Kinoshita M, Sakaguchi M, Nishikimi M, Yagi K, Wakamatsu Y, Ozato K (1996) Transgenic expression of L-gulono-gamma-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for L-ascorbic acid biosynthesis. Biochem Biophys Res Commun 223:650–653CrossRefPubMedGoogle Scholar
  41. Uddin RK, Zhang Y, Siu VM, Fan Y, O’Reilly RL, Rao J, Singh SM (2006) Breakpoint associated with a novel 2.3 mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions. BMC Med Genet 7:18Google Scholar
  42. Winter H, Langbein L, Krawczak M, Cooper DN, Jave-Suarez LF, Rogers MA, Praetzel S, Heidt PJ, Schweizer J (2001) Human type I hair keratin pseudogene phihHaA has functional orthologs in the chimpanzee and gorilla: evidence for recent inactivation of the human gene after the Pan-Homo divergence. Hum Genet 108:37–42CrossRefPubMedGoogle Scholar
  43. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558CrossRefPubMedGoogle Scholar
  44. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M (2010) Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 11:R26CrossRefPubMedGoogle Scholar
  45. Zilva SS (1936) Vitamin C requirements of the guinea-pig. Biochem J 30:1419–1429PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département de biologie et Centre de recherche avancée en génomique environnementaleUniversité d’OttawaOttawaCanada

Personalised recommendations