, Volume 139, Issue 1, pp 33–39 | Cite as

Developing transgenic Anopheles mosquitoes for the sterile insect technique

  • Tony Nolan
  • Philippos Papathanos
  • Nikolai Windbichler
  • Kalle Magnusson
  • Jason Benton
  • Flaminia Catteruccia
  • Andrea Crisanti
SI-Molecular Technologies to Improve SIT


In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.


Anopheles Transgenic Mosquitoes Sterile insect technique Malaria Dominant lethality 


  1. Adelman ZN, Jasinskiene N, Onal S, Juhn J, Ashikyan A, Salampessy M, MacCauley T, James AA (2007) Nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci USA 104(24):9970–9975CrossRefPubMedGoogle Scholar
  2. Alphey L (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32(10):1243–1247CrossRefPubMedGoogle Scholar
  3. Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19(8):349–355CrossRefPubMedGoogle Scholar
  4. Calkins CO, Parker AG (2005) Sterile insect quality. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 269–296Google Scholar
  5. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789):959–962CrossRefPubMedGoogle Scholar
  6. Catteruccia F, Godfray HC, Crisanti A (2003) Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299(5610):1225–1227CrossRefPubMedGoogle Scholar
  7. Catteruccia F, Benton JP, Crisanti A (2005) An anopheles transgenic sexing strain for vector control. Nat Biotechnol 23(11):1414–1417CrossRefPubMedGoogle Scholar
  8. Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in drosophila. Genes Dev 10(14):1773–1782CrossRefPubMedGoogle Scholar
  9. Curtis CF (1978) Genetic sex separation in anopheles arabiensis and the production of sterile hybrids. Bull World Health Organ (56):453–454Google Scholar
  10. Curtis CF (1979) Genetic sexing techniques based on translocation of insecticide resistance to the y chromosome. Bull OILB/SROP (2)Google Scholar
  11. Curtis CF, Akiyama J, Davidson G (1976) A genetic sexing system in Anopheles gambiae species a. Mosquito News (36):492–498Google Scholar
  12. Dame DA, Lofgren CS, Ford HR, Boston MD, Baldwin KF, Jeffery GM (1974) Release of chemosterilized males for the control of Anopheles albimanus in el salvador Ii. Methods of rearing, sterilization, and distribution. Am J Trop Med Hyg 23(2):282–287PubMedGoogle Scholar
  13. Franz G (2002) Recombination between homologous autosomes in medfly (Ceratitis capitata) males: type-1 recombination and the implications for the stability of genetic sexing strains. Genetica 116(1):73–84CrossRefPubMedGoogle Scholar
  14. Franz G (2005) Genetic sexing strains in mediterranean fruit fly, an example for other species amenable to large-scale rearing as required for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 427–451Google Scholar
  15. Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25(3):353–357CrossRefPubMedGoogle Scholar
  16. Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa’alla T, Coleman PG, Alphey L (2005) A dominant lethal genetic system for autocidal control of the mediterranean fruitfly. Nat Biotechnol 23(4):453–456CrossRefPubMedGoogle Scholar
  17. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12):5547–5551CrossRefPubMedGoogle Scholar
  18. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of drosophila melanogaster functions in programmed cell death. Genes Dev 9(14):1694–1708CrossRefPubMedGoogle Scholar
  19. Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggybac transposable element. Insect Mol Biol 10(6):597–604CrossRefPubMedGoogle Scholar
  20. Handler AM, Zimowska GJ, Horn C (2004) Post-integration stabilization of a transposon vector by terminal sequence deletion in drosophila melanogaster. Nat Biotechnol 22(9):1150–1154CrossRefPubMedGoogle Scholar
  21. Holt RA et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591):129–149CrossRefPubMedGoogle Scholar
  22. Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21(1):64–70CrossRefPubMedGoogle Scholar
  23. Kaiser PE, Seawright JA, Dame DA, Joslyn DJ (1978) Development of a genetic sexing system for Anopheles albimanus. J Econ Entomol 71(5):766–771Google Scholar
  24. Klassen W, Curtis CF (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 3–31Google Scholar
  25. Lycett GJ, Kafatos FC, Loukeris TG (2004) Conditional expression in the malaria mosquito Anopheles stephensi with tet-on and tet-off systems. Genetics 167(4):1781–1790Google Scholar
  26. McCarthy JV, Dixit VM (1998) Apoptosis induced by drosophila reaper and grim in a human system. J Biol Chem 273(37):24009–24015CrossRefPubMedGoogle Scholar
  27. Nimmo DD, Alphey L, Meredith JM, Eggleston P (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15(2):129–136CrossRefPubMedGoogle Scholar
  28. Papathanos PA, Windbichler N, Menichelli M, Burt A, Crisanti A (2009) The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Mol Biol 10:65CrossRefPubMedGoogle Scholar
  29. Perera OP, Harrell IR, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggybac/egfp transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297CrossRefPubMedGoogle Scholar
  30. Rendon P, McInnis D, Lance D, Stewart J (2004) Medfly (diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in guatemala. J Econ Entomol 97(5):1547–1553CrossRefPubMedGoogle Scholar
  31. Saccone G, Pane A, Polito LC (2002) Sex determination in flies, fruitflies and butterflies. Genetica 116(1):15–23CrossRefPubMedGoogle Scholar
  32. Scali C, Nolan T, Sharakhov I, Sharakhova M, Crisanti A, Catteruccia F (2007) Post-integration behavior of a minos transposon in the malaria mosquito Anopheles stephensi. Mol Genet Genomics 278(5):575–584CrossRefPubMedGoogle Scholar
  33. Schetelig MF, Horn C, Handler AM, Wimmer EA (2007) Development of an embryonic lethality system in mediterranean fruit fly Ceratitis capitata. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pest, from research to field implementation. Springer, pp 85–94CrossRefGoogle Scholar
  34. Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (diptera: Tephritidae). BMC Biol 7:4CrossRefPubMedGoogle Scholar
  35. Scott MJ, Heinrich JC, Li X (2004) Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. Insect Biochem Mol Biol 34(2):185–192CrossRefPubMedGoogle Scholar
  36. Telonis-Scott M, Kopp A, Wayne ML, Nuzhdin SV, McIntyre LM (2009) Sex-specific splicing in drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics 181(2):421–434CrossRefPubMedGoogle Scholar
  37. Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287(5462):2474–2476CrossRefPubMedGoogle Scholar
  38. White K, Tahaoglu E, Steller H (1996) Cell killing by the drosophila gene reaper. Science 271(5250):805–807CrossRefPubMedGoogle Scholar
  39. Wilson R, Orsetti J, Klocko AD, Aluvihare C, Peckham E, Atkinson PW, Lehane MJ, O’Brochta DA (2003) Post-integration behavior of a mos1 mariner gene vector in Aedes aegypti. Insect Biochem Mol Biol 33(9):853–863CrossRefPubMedGoogle Scholar
  40. Windbichler N, Papathanos PA, Crisanti A (2008) Targeting the x chromosome during spermatogenesis induces y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet 4(12):e1000291CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tony Nolan
    • 1
  • Philippos Papathanos
    • 1
  • Nikolai Windbichler
    • 1
  • Kalle Magnusson
    • 1
  • Jason Benton
    • 1
  • Flaminia Catteruccia
    • 1
  • Andrea Crisanti
    • 1
    • 2
  1. 1.Faculty of Life SciencesImperial College LondonLondonUK
  2. 2.Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations