, Volume 138, Issue 9–10, pp 979–984 | Cite as

Nuclear copies of mitochondrial genes: another problem for ancient DNA

  • Robert-Jan den Tex
  • Jesus E. Maldonado
  • Richard Thorington
  • Jennifer A. LeonardEmail author
Original Research


The application of ancient DNA techniques is subject to many problems caused primarily by low quality and by low quantity of DNA. For these reasons most studies employing ancient DNA rely on the characterization of mitochondrial DNA, which is present in many more copies per cell than nuclear DNA and hence more copies are likely to survive. We used universal and taxon specific mitochondrial primers to amplify DNA from museum specimens, and found many instances where the amplification of nuclear copies of the mitochondrial gene (numts) instead of the targeted mitochondrial fragment had occurred. Furthermore, the likelihood of amplifying numts increased dramatically when universal primers were utilized. Here we suggest that ancient DNA practitioners must consider the possibility that numts can be amplified at higher rates than previously thought. This is another complication for ancient DNA studies, but it also suggests that more extensive inclusion of nuclear markers in ancient DNA studies should be feasible.


Numt aDNA Sundasciurus Mitochondria Universal primers 



Samples were kindly provided by the National Museum of Natural History ‘Naturalis’ (formerly Rijksmuseum van Natuurlijke Historie), Leiden, The Netherlands; the Natural History Museum, London; and the United States National Museum of Natural History, Smithsonian Institution. This project was funded by the Smithsonian Restricted Endowment Walcott Fund and the Swedish Research Council. Logistical support was provided by the Center for Conservation and Evolutionary Genetics, National Zoological Park, Smithsonian Institution, USA.


  1. Arctander P (1995) Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc R Soc Lond B 262:13–19CrossRefGoogle Scholar
  2. Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505CrossRefPubMedGoogle Scholar
  3. Bensasson D, Zhang D-X, Hewitt GM (2000) Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol 17:406–415PubMedGoogle Scholar
  4. den Tex R-J, Thorington R, Maldonado JE, Leonard JA (2010) Speciation dynamics in the SE Asian tropics: putting a time perspective on the phylogeny and biogeography of Sundaland tree squirrels, Sundasciurus. Mol Phylogen Evol 55:711–720CrossRefGoogle Scholar
  5. Gonzalez-Ittig RE, Gardenal CN (2008) Co-amplification of mitochondrial pseudogenes in Calomys musculinus (Rodentia, Cricetidae): a source of error in phylogeographic studies. Genome 51:73–78CrossRefPubMedGoogle Scholar
  6. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359CrossRefPubMedGoogle Scholar
  7. Kim J-H, Antunes A, Lou S-J, Menninger J, Nash WG, O’Brien SJ, Johnson WE (2006) Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene 366:292–302CrossRefPubMedGoogle Scholar
  8. Kolokotronis S-O, MacPhee RDE, Greenwood A (2007) Detection of mitochondrial insertions in the nucleus (NuMts) of Pleistocene and modern muskoxen. BMC Evol Biol 7:67CrossRefPubMedGoogle Scholar
  9. Leonard JA, Vilà C, Wayne RK (2005) Legacy lost: genetic variability and population size of extirpated US gray wolves (Canis lupus). Mol Ecol 14:9–17CrossRefPubMedGoogle Scholar
  10. Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK, Fleischer RC (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Archaeo Sci 34:1361–1366CrossRefGoogle Scholar
  11. Mirol PM, Mascheretti S, Searle JB (2000) Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84:538–547CrossRefPubMedGoogle Scholar
  12. Orlando L, Leonard JA, Laudet V, Guerin C, Hänni C (2003) Ancient DNA analysis reveals wooly rhino evolutionary relationships. Mol Phylo Evol 28:76–90Google Scholar
  13. Pereira SL, Baker AJ (2004) Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. BMC Evol Biol 4:17. doi: 10.1186/1471-2148-4-17 CrossRefPubMedGoogle Scholar
  14. Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084CrossRefPubMedGoogle Scholar
  15. Sambrook E, Fritsch F, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  16. Sorenson MD, Quinn TW (1998) Numts: a challenge for avian systematics and population biology. Auk 115:214–221Google Scholar
  17. Tourmen Y, Baris O, Dessen P, Jacques C, Malthièry Y, Reynier P (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71–77CrossRefPubMedGoogle Scholar
  18. Triant DA, DeWoody JA (2007a) The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography. J Mamm 88:908–920CrossRefGoogle Scholar
  19. Triant DA, DeWoody JA (2007b) Extensive mitochondrial DNA transfer in a rapidly evolving rodent has been mediated by independent insertion events and by duplications. Gene 401:61–70CrossRefPubMedGoogle Scholar
  20. Wayne RK, Leonard JA, Cooper A (1999) Full of sound and fury: the recent history of ancient DNA. Annu Rev Ecol Syst 30:457–477CrossRefGoogle Scholar
  21. Williams ST, Knowlton N (2001) Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol 18:1484–1493PubMedGoogle Scholar
  22. Zhang D-X, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Evol Ecol 11:247–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Robert-Jan den Tex
    • 1
  • Jesus E. Maldonado
    • 2
    • 3
  • Richard Thorington
    • 2
  • Jennifer A. Leonard
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Evolutionary BiologyUppsala UniversityUppsalaSweden
  2. 2.Department of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonUSA
  3. 3.Center for Conservation and Evolutionary GeneticsSmithsonian Conservation Biology Institute, National Zoological ParkWashingtonUSA
  4. 4.Estación Biológica de Doñana-CSICSevillaSpain

Personalised recommendations