Genetica

, Volume 138, Issue 7, pp 763–773 | Cite as

Potential for evolutionary change in the seasonal timing of germination in sea beet (Beta vulgaris ssp. maritima) mediated by seed dormancy

  • Kristen Wagmann
  • Nina-Coralie Hautekèete
  • Yves Piquot
  • Henk Van Dijk
Article

Abstract

In sea beet (Beta vulgaris ssp. maritima), germination occurs in autumn or spring and is mediated by dormancy which can be released by cold or dry periods. Environmental change such as current climate change may require evolutionary response in seasonal timing. Here, we explore the potential for such evolutionary change. Seed dormancy was studied in a composite population based on seeds from all over the species range in France together with several generations of reciprocal crosses. We found high, repeatable variability for dormancy rate among individuals under greenhouse conditions and confirmed its relevance for germination phenology in the field. Our data fitted best with an exclusively maternal determination of the dormancy phenotype. Narrow-sense heritability, h² ≈ 0.5 in the composite population and ≈0.4 in the original local populations, was such that rapid evolutionary change in the relative proportions of autumn and spring germination may be possible.

Keywords

Global change Dormancy release Germination phenology Heritability Maternal effects Repeatability 

Notes

Acknowledgments

We thank Robert Dron and Eric Schmitt for technical assistance; Cécile Meunier for technical and theoretical suggestions; PPF ELICO (Laboratoire Ecosystèmes Littoraux et Côtiers), Jean–Claude Dauvin, Thierry Caron, Michel Priem and Station Marine de Wimereux for providing access to the experimental field site and technical assistance and Laurent Amsellem, Sylvain Billiard, Mathilde Dufaÿ, Solenn Le Cadre and Fabrice Roux for their valuable comments. Kristen Wagmann acknowledges a PhD grant from the French Ministry of Higher Education and Research.

References

  1. Alonso-Blanco C, Bentsink L, Hanhart CJ, Vries HBE, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729PubMedGoogle Scholar
  2. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, LondonGoogle Scholar
  3. Bentsink L, Soppe W, Koornneef M (2007) Genetic aspects of seed dormancy. In: Blackwell publishing Ltd Seed development, dormancy and germination: Oxford, UK, pp 113–132Google Scholar
  4. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066CrossRefPubMedGoogle Scholar
  5. Bradford KJ (2005) Threshold models applied to seed germination ecology. New Phytol 165:338–341. doi:10.1111/j.1469-8137.2004.01302.x CrossRefPubMedGoogle Scholar
  6. Bradshaw WE, Holzapfel CM (2007) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166. doi:10.1111/j.1365-294X.2007.03509.x CrossRefPubMedGoogle Scholar
  7. Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129CrossRefPubMedGoogle Scholar
  8. De Cauwer I, Dufaÿ M, Cuguen J, Arnaud JF (2010). Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris ssp. maritima. Mol Ecol 19:1540–1558Google Scholar
  9. Donohue K (2002) Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83:1006–1016. doi:10.1890/0012-9658(2002)083[1006:GTINSO]2.0.CO;2 CrossRefGoogle Scholar
  10. Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005a) Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution 59:740–757. doi:10.1554/04-419 PubMedGoogle Scholar
  11. Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005b) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770. doi:10.1554/04-418 PubMedGoogle Scholar
  12. Falconer DS (1989) Introduction to quantitative genetics. Longman scientific and technical, 3rd edn. University of Edinburgh, UKGoogle Scholar
  13. Fénart S, Auterlitz F, Cuguen J, Arnaud JF (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16:3801–3813. doi:10.1111/j.1365-294X.2007.03448.x CrossRefPubMedGoogle Scholar
  14. Fievet V, Touzet P, Arnaud JF, Cuguen J (2007) Spatial analysis of nuclear and cytoplasmic DNA diversity in wild sea beet (Beta vulgaris ssp. maritima) populations: do marine currents shape the genetic structure? Mol Ecol 16:1847–1864. doi:10.1111/j.1365-294X.2006.03208.x CrossRefPubMedGoogle Scholar
  15. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. doi:10.1111/j.1469-8137.2006.01787.x PubMedGoogle Scholar
  16. Foley ME, Fennimore SA (1998) Genetic basis for seed dormancy. Seed Sci Res 8:173–182. doi:10.1017/S0960258500004086 CrossRefGoogle Scholar
  17. Forcella F, Benech Arnold RL, Sanchez R, Ghersa CM (2000) Modeling seedling emergence. Field Crops Res 67:123–139. doi:10.1016/S0378-4290(00)00088-5 CrossRefGoogle Scholar
  18. Galloway LF (2002) The effect of maternal phenology on offspring characters in the herbaceous plant Campanula americana. J Ecol 90:851–858. doi:10.1046/j.1365-2745.2002.00714.x CrossRefGoogle Scholar
  19. Hautekèete N-C, Piquot Y, Van Dijk H (2002) Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance. J Ecol 90:508–516. doi:10.1046/j.1365-2745.2002.00688.x CrossRefGoogle Scholar
  20. Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Macháčková I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060. doi:10.1093/jxb/erm162 CrossRefPubMedGoogle Scholar
  21. Heydecker W, Chetram RS, Heydecker JC (1971) Water relations of beetroot seed germination II. Effects of the ovary cap and the endogenous inhibitors. Ann Bot 35:31–42. doi:10.2503/jjshs.50.355 Google Scholar
  22. Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58. doi:10.1016/j.tplants.2008.10.002 CrossRefPubMedGoogle Scholar
  23. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36. doi:10.1016/S1369-5266(01)00219-9 CrossRefPubMedGoogle Scholar
  24. Larsson EL (2002) Seed banks and seed dispersal in subarctic and arctic environments. Dissertation, University of Göteborg, SwedenGoogle Scholar
  25. Leinonen K (1998) Picea abies seed ecology: effect of environmental factors on dormancy, vigor and germination. Dissertation, University of Helsinki, FinlandGoogle Scholar
  26. Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation and taxonomy. Wagening Agric Univ Pap 93:1–155Google Scholar
  27. Meyer SE, Allen PS (1999) Ecological genetics of seed germination regulation in Bromus tectorum L. 1. Phenotypic variance among and within populations. Oecologia 120:27–34. doi:10.1007/s004420050829 CrossRefGoogle Scholar
  28. Meyer SE, Pendleton RL (2000) Genetic regulation of seed dormancy in Purshia tridentata (Rosaceae). Ann Bot 85:521–529. doi:10.1006/anbo.1999.1099 CrossRefGoogle Scholar
  29. Peto FH (1964) Methods of loosening tight seed caps in monogerm seed to improve germination. J Am Soc Sugar Beet Techn 13:281–286Google Scholar
  30. Philippi T (1993) Bet-hedging germination of desert annuals: variation among populations and maternal effect in Lepidium lasiocarpum. Am Nat 142:488–507. doi:10.1086/285551 CrossRefPubMedGoogle Scholar
  31. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  32. Simons AM (2009) Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proc R Soc B 276:1987–1992Google Scholar
  33. Simons AM, Johnston MO (2006) Environmental and genetic sources of diversification in the timing of seed germination: implications for the evolution of bet hedging. Evolution 60:2280–2292. doi:10.1111/j.0014-3820.2006.tb01865.x PubMedGoogle Scholar
  34. Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman and Company 3rd, New York, USAGoogle Scholar
  35. StatSoft Inc (2006) STATISTICA 7.1, Data analysis software system. Statsoft Inc, TulsaGoogle Scholar
  36. Van Dijk H (2009) Ageing effects in an iterparous plant species with a variable lifespan. Ann Bot 104(1):115–124. doi:10.1093/aob/mcp100 CrossRefPubMedGoogle Scholar
  37. Van Dijk H, Hautekèete N (2007) Long day plants and the response to global warming: rapid evolutionary change in day length sensitivity is possible in wild beet. J Evol Biol 20:349–357. doi:10.1111/j.1420-9101.2006.01192.x CrossRefPubMedGoogle Scholar
  38. Van Dijk H, Boudry P, McCombie H, Vernet P (1997) Flowering time in wild beet (Beta vulgaris ssp. maritima) along a latitudinal cline. Acta Oecol 18:47–60. doi:10.1016/S1146-609X(97)80080-x CrossRefGoogle Scholar
  39. Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kristen Wagmann
    • 1
  • Nina-Coralie Hautekèete
    • 1
  • Yves Piquot
    • 1
  • Henk Van Dijk
    • 1
  1. 1.Laboratoire Génétique et Evolution des Populations Végétales, UMR 8016CNRSVilleneuve d’Ascq cedexFrance

Personalised recommendations