, Volume 138, Issue 2, pp 211–218 | Cite as

Mitochondrial sequence variation in ancient horses from the Carpathian Basin and possible modern relatives

  • K. PriskinEmail author
  • K. Szabó
  • G. Tömöry
  • E. Bogácsi-Szabó
  • B. Csányi
  • R. Eördögh
  • C. S. Downes
  • I. Raskó


Movements of human populations leave their traces in the genetic makeup of the areas affected; the same applies to the horses that move with their owners This study is concerned with the mitochondrial control region genotypes of 31 archaeological horse remains, excavated from pre-conquest Avar and post-conquest Hungarian burial sites in the Carpathian Basin dating from the sixth to the tenth century. To investigate relationships to other ancient and recent breeds, modern Hucul and Akhal Teke samples were also collected, and mtDNA control region (CR) sequences from 76 breeds representing 921 individual specimens were combined with our sequence data. Phylogenetic relationships among horse mtDNA CR haplotypes were estimated using both genetic distance and the non-dichotomous network method. Both methods indicated a separation between horses of the Avars and the Hungarians. Our results show that the ethnic changes induced by the Hungarian Conquest were accompanied by a corresponding change in the stables of the Carpathian Basin.


Horse mtDNA control region Carpathian Basin Genetic variation Ancient DNA 



We thank Istvan Vörös, archaeozoologist of the Hungarian National Museum, for the early Hungarian Horse samples, and for his professional advice, József Szentpéteri and László Költő, archeologists of the Hungarian National Museum, for the Avar samples and valuable scientific literature. We greatfully acknowledge András Szontagh’s gift of the Turkoman Akhal Teke hair roots, and thank Nyéki József, director of Mahóca Akhal Teke stud in Hungary for the magnanimous help and for samples, and Gábor Salamon, executive of the Aggtelek National Park, for the Hucul horse samples. Also we thank Mária Radó, Gabriella Lehőcz and Andrea Blasko for helpful discussions.

Supplementary material


  1. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  2. Bartosiewicz L (2006) Phenotype and age in protohistoric horses: a comparison between Avar and Early Hungarian crania. In: Ruscillo D (ed) Recent advances in ageing and sexing animal bones. Oxbow Books, Oxford, pp 204–215Google Scholar
  3. Benecke N (1999) The holocene history of the European vertebrate fauna. Verlag Marie Leidorf Gmbh, Rahden/WestfGoogle Scholar
  4. Bjørnstad G, Nilsen NØ, Røed KH (2003) Genetic relationship between Mongolian and Norwegian horses? Anim Genet 34:55–58Google Scholar
  5. Bogácsi-Szabó E, Kalmár T, Csányi B, Tömöry GY, Czibula Á, Priskin K, Horváth F, Downes CS, Raskó I (2005) Mitochondrial DNA of ancient Cumanians: culturally Asian steppe nomadic immigrants with substantially more western Eurasian mitochondrial DNA lineages. Hum Biol 77:639–662CrossRefPubMedGoogle Scholar
  6. Csányi B, Bogácsi-Szabó E, Tömöry G, Czibula A, Priskin K, Csösz A, Mende B, Langó P, Csete K, Zsolnai A, Conant EK, Downes CS, Raskó I (2008) Y-chromosome analysis of ancient Hungarian and two modern Hungarian-speaking populations from the Carpathian Basin. Ann Hum Genet 72:519–534CrossRefPubMedGoogle Scholar
  7. Draper J (1996) The book of horses and horse care, 2nd edn. Smithmark, New YorkGoogle Scholar
  8. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  9. Hecker W (1955) Egy elfelejtett fajta, a Czindery (A forgotten breed, the Cyindery horse). Lovas Nemzet 1:24–26 [in Hungarian]Google Scholar
  10. Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K (2002) Mitochondrial DNA and the origins of the domestic horse. Proc Natl Acad Sci USA 99:10905–10910CrossRefPubMedGoogle Scholar
  11. Kalmar T, Bachrati CZ, Marcsik A, Rasko I (2000) A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Res 28:E67CrossRefPubMedGoogle Scholar
  12. Levine MA (1999) The origins of horse husbandry on the Eurasian Steppe. In: Levine M, Rassamakin Y, Kisleno A, Tatarintseva N (eds) Late prehistoric exploitation of the Eurasian Steppe. McDonald Institute, Cambridge, pp 5–59Google Scholar
  13. Lindgren G, Backström N, Swinburne J, Hellborg L, Einarsson A, Sandberg K, Cothran G, Vilà C, Binns M, Ellegren H (2004) Limited number of patrilines in horse domestication. Nat Genet 36:335–336CrossRefPubMedGoogle Scholar
  14. Lopes MS, Mendonca D, Cymbron T, Valera M, da Costa-Ferreira J, Machado Ada C (2005) The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation. Anim Genet 36:196–202PubMedCrossRefGoogle Scholar
  15. Malmstrom H, Vilá C, Gilbert MTP, Stora J, Willerslev E, Holmlund G, Gotherstrom A (2008) Barking up the wrong tree: modern northern European dogs fail to explain their origin. BMC Evol Biol. doi:  10.1186/1471-2148-8-71
  16. McGahern A, Bower MA, Edwards CJ, Brophy PO, Sulimova G, Zakharov I, Vizuete-Forster M, Levine M, Li S, MacHugh DE, Hill EW (2006) Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations. Anim Genet 37:494–497CrossRefPubMedGoogle Scholar
  17. Mihók S, Ban B, Jozsa C, Bodo I (2005) Estimation of genetic distance between traditional horse breeds in Hungary. European Association Animal Production 116:111–122Google Scholar
  18. Royo LJ, Alvarez I, Beja-Pereira A, Molina A, Fernández I, Jordana J, Gómez E, Gutiérrez JP, Goyache F (2005) The origins of Iberian horses assessed via mitochondrial DNA. J Hered 96:663–669CrossRefPubMedGoogle Scholar
  19. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497Google Scholar
  20. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  21. Tömöry GY, Csányi B, Bogácsi-Szabó E, Kalmár T, Czibula Á, Csősz A, Priskin K, Mende B, Langó P, Downes CS, Raskó I (2007) Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. Am J Phys Anthropol 134:354–368CrossRefPubMedGoogle Scholar
  22. Vilá C, Leonard JA, Götherström A, Marklund S, Sandberg K, Lidén K, Wayne RK, Ellegren H (2001) Widespread origins of domestic horse lineages. Science 291:474–477CrossRefPubMedGoogle Scholar
  23. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–5134PubMedGoogle Scholar
  24. Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • K. Priskin
    • 1
    Email author
  • K. Szabó
    • 2
  • G. Tömöry
    • 1
  • E. Bogácsi-Szabó
    • 1
  • B. Csányi
    • 1
  • R. Eördögh
    • 1
  • C. S. Downes
    • 3
  • I. Raskó
    • 1
  1. 1.Institute of GeneticsBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Institute of Biology, Faculty of Veterinary SciencesSzent István UniversityBudapestHungary
  3. 3.School of Biomedical SciencesUniversity of UlsterCounty LondonderryNorthern Ireland

Personalised recommendations