, 138:191 | Cite as

Amplification of repetitive DNA and origin of a rare chromosomal sex bivalent in Deltochilum (Calhyboma) verruciferum (Coleoptera, Scarabaeidae)

  • Diogo Cavalcanti Cabral-de-Mello
  • Rita de Cássia de Moura
  • Maria José de Souza


The most intriguing karyotypic variation in the Coleoptera involves variation in sex chromosome structure, origin and behavior. In this report we describe chromosomal characteristics of Deltochilum (Calhyboma) verruciferum (Coleoptera, Scarabaeidae) using conventional and differential cytogenetic techniques, with emphasis on the description of a rare sex bivalent in the Coleoptera and dispersion of repetitive DNA. This species shows 2n = 20,XYp with biarmed chromosomes. Analysis of constitutive heterochromatin through C-banding revealed mainly diphasic autosomes with short heterochromatic arms, while the X was completely heterochromatic and the Y was heterochromatic in the long arm. This pattern was confirmed through the use of CMA3 fluorochrome that stained all heterochromatic regions. Silver nitrate staining marked all heterochromatic regions and the lumen of the sex bivalent in metaphase I. These results indicated that karyotypic differentiation in D. (C.) verruciferum involved autosomal amplification and dispersion of repetitive DNA and the origin of unusual sex chromosomes (XYp), generating a unique karyotype in this species.


Heterochromatin Meiosis Sex chromosomes evolution XYp 


  1. Bione E, Moura RC, Carvalho R, Souza MJ (2005) Karyotype, C-and fluorescence banding pattern, NOR location and FISH study of five Scarabaeidae (Coleoptera) species. Gen Mol Biol 26:376–381. doi:10.1590/S1415-47572005000300006 Google Scholar
  2. Cabral-de-Mello DC, Oliveira SG, Ramos IC, Moura RC (2008) Karyotype differentiation patterns in species of the subfamily Scarabaeinae (Scarabaeidae, Coleoptera). Micron 39:1243–1250. doi:10.1016/j.micron.2008.04.002 CrossRefPubMedGoogle Scholar
  3. Colomba MS, Vitturi R, Zunino M (2000) Karyotype analysis, banding, and fluorescent in situ hybridization in the Scarab beetle Gymnopleurus sturmi McLeady (Coleoptera, Scarabaeoidea, Scarabaeidae). J Hered 91:260–264CrossRefPubMedGoogle Scholar
  4. Costa C (2000) Estado de conocimiento de los Coleoptera Neotropicales. In: Martin Piera F, Morrone JJ, Melic A (eds) Hacia un Proyecto CYTED para el inventario y estimación de la diversidad Entomológica en Iberoamérica: PrIBES-2000, m3 m—Monografias Tercer Milênio v.1. SEA, Zaragoza, pp 99–114Google Scholar
  5. Dias CM, Schneider MC, Rosa SP, Costa C, Cella DM (2007) The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna. Acta Zool 88:309–316. doi:10.1111/j.1463-6395.2007.00283.x CrossRefGoogle Scholar
  6. Dover G (2002) Molecular drive. Trends Genet 18:587–589. doi:10.1016/S0168-9525(02)02789-0 CrossRefPubMedGoogle Scholar
  7. Drets ME, Corbella E, Panzera F, Folle GA (1983) C-banding and non-homologous association II. The “parachute” Xyp sex bivalent and the behavior of heterochromatic segments in Epilachna paenulata. Chromosoma 88:249–255. doi:10.1007/BF00292901 CrossRefGoogle Scholar
  8. Dutrillaux AM, Dutrillaux B (2009) Sex chromosomes rearrangements in Polyphaga beetles. Sex Dev 3:43–54. doi:10.1159/000200081 CrossRefPubMedGoogle Scholar
  9. Galián J, Hogan JE, Vogler A (2002) The origin of multiple sex chromosomes in tiger beetles. Mol Biol Evol 19:1792–1796PubMedGoogle Scholar
  10. Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382. doi:10.1007/s00412-006-0065-5 CrossRefPubMedGoogle Scholar
  11. James LV, Angus RB (2007) A chromosomal investigation of some British Cantharidae (Coleoptera). Genetica 130:293–300. doi:10.1007/s10709-006-9106-5 CrossRefPubMedGoogle Scholar
  12. Karagyan G, Kuznetsova VG, Lachowska D (2004) New cytogenetic data on Armanian buprestids (Coleoptera, Buprestidae) with a discussion of karyotype variation within the family. Fol Biol (Kraków) 52:151–158. doi:10.3409/1734916044527601 CrossRefGoogle Scholar
  13. Lachowska D, Holecová M, Rożek M (1998) Karyotypic data on weevils (Coleoptera, Curculionidae. Fol Biol (Kraków) 46:129–136Google Scholar
  14. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. doi:348-352.10.1038/nature02228 CrossRefPubMedGoogle Scholar
  15. Mesa A, Fontanetti CS (1985) The chromosomes of a primitive species of beetle: Ytu Zeus (Coleoptera, Myxophaga, Torridincolidae). Proc Acad Nat Sci Phil 137:102–105Google Scholar
  16. Moura RC, Souza MJ, Melo NF, Lira-Neto AC (2003) Karyotypic characterization of representatives from Melolonthinae (Coleoptera, Scarabaeidae): karyotypic analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138:200–206. doi:10.1034/j.1601-5223.2003.01611.x CrossRefGoogle Scholar
  17. Petitpierre E, Kippenberg H, Mikhailov Y, Bourdonné JC (2004) Karyology and cytotaxonomy of the genus Chrysolina Motschulsky (Coleoptera, Chrysomelidae). Zool Anz 242:347–352. doi:10.1078/0044-5231-00108 CrossRefGoogle Scholar
  18. Rożek M, Lachowska D, Petitpierre E, Holecová M (2004) C-bands on chromosomes of 32 beetle species (Coleoptera: Elateridae, Cantharidae, Oedemeridae, Cerambycidae, Chrysomelidae and Curculionidae). Hereditas 140:1–10. doi:10.1111/j.1601-5223.2004.01810.x CrossRefGoogle Scholar
  19. Rufas JS, Gimenez-Abian J, Suja JA, Garcia de la Vega C (1987) Chromosome organization in meiosis revealed by light microscope analysis of silver-stained cores. Genome 29:706–712. doi:10.1139/g87-121 Google Scholar
  20. Schneider MC, Rosa SP, Almeida MC, Costa C, Cella DM (2007) Strategies of karyotype differentiation in Elateridae (Coleoptera, Polyphaga). Micron 38:590–598. doi:10.1016/j.micron.2006.10.002 CrossRefPubMedGoogle Scholar
  21. Schweizer D, Mendelak M, White MJD, Contreras N (1983) Cytogenetics of the parthenogenetic grasshopper Warramaba virgo and its bisexual relatives. X. Pattern of fluorescent banding. Chromosoma 88:227–236. doi:10.1007/BF00285625 CrossRefGoogle Scholar
  22. Smith SG (1953) Chromosome numbers of Coleoptera. Heredity 7:31–48. doi:10.1038/hdy.1953.3 CrossRefGoogle Scholar
  23. Smith SG, Virkki N (1978) Coleoptera. In: John B (ed) Animal cytogenetics. Borntraeger, Berlin, Stuttgard, p 366Google Scholar
  24. Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595CrossRefPubMedGoogle Scholar
  25. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306. doi:10.1007/BF01919708 CrossRefPubMedGoogle Scholar
  26. Vidal OR (1984) Coleoptera from Argentina. Genetica 65:235–239CrossRefGoogle Scholar
  27. Virkki N, Mazzella C, Denton A (1990) Staining of substances adjacent to the Xyp sex bivalent of some weevils (Coleoptera: Curculionidae). J Agric Univ Puerto Rico 74:405–418Google Scholar
  28. Virkki N, Mazzella C, Denton A (1991) Silver staining of the coleopteran Xyp sex bivalent. Cytobios 67:45–63Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Diogo Cavalcanti Cabral-de-Mello
    • 1
    • 2
  • Rita de Cássia de Moura
    • 2
  • Maria José de Souza
    • 1
  1. 1.Departamento de Genética, Centro de Ciências BiológicasUniversidade Federal de Pernambuco, UFPERecifeBrazil
  2. 2.Departamento de Biologia, Instituto de Ciências Biológicas/ICBUniversidade de Pernambuco/UPERecifeBrazil

Personalised recommendations