Genetica

, Volume 137, Issue 2, pp 221–231 | Cite as

Genetic analysis of a local population of Oryza glumaepatula using SSR markers: implications for management and conservation programs

  • Ana Rosa de Campos Vaz
  • Tereza Cristina de Oliveira Borba
  • Claudio Brondani
  • Paulo Hideo Nakano Rangel
  • Graziela Silvia de Oliveira Camargo
  • Mariana Pires de Campos Telles
  • José Alexandre Felizola Diniz Filho
  • Rosana Pereira Vianello Brondani
Article

Abstract

Knowledge of natural diversity and population structures of wild species, which might be related to cultivated species, is fundamental for conservation and breeding purposes. In this study, a genetic characterization of a large population of Oryza glumaepatula, occurring in a 10 km2 area located at Tamengo Basin (Paraguay River, Brazil), was performed using SSR markers. This population is annually dragged from the river to permit navigation; one goal of this study was to examine the impact of this removal on genetic variability. From 18 polymorphic SSR markers, a total of 190 alleles were detected in a sample of 126 individuals, with an average of 10.3 alleles/locus, and a He of 0.67. The five QTL-related markers showed an average He value of 0.56, while the remaining 13 markers detected an average estimate of 0.70. An apparent outcrossing rate of 30%, a high proportion of alleles at low frequencies (56%), and the presence of exclusive alleles (9.5%) were found, with strong evidence of the establishment of individuals from different populations upstream in the Paraguay River. For conservation purposes, the river drag has no effect on the population. However, periodical seed collection from the Corumbá population can preserve part of the genetic variability present in upstream populations reducing the need for upriver collecting expeditions.

Keywords

Conservation genetics Wild rice Microsatellite markers Natural genetic resources Paraguay River Population genetics 

References

  1. Akimoto M, Shimamoto Y, Morishima H (1998) Population genetic structure of wild rice Oryza glumaepatula distributed in the Amazon flood area influenced by its life-history traits. Mol Ecol 7:1371–1381CrossRefGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L et al. (2001) GENETIX. Université de Montpellier Version 4.05.2. Available via DIALOG http://www.univ-montp2.fr/~genetix/genetix/genetix.htm Accessed 17 Jan 2008
  3. Brondani RPV, Grattapaglia D (2001) Cost-effective method to synthesize a fluorescent internal DNA standard for automated fragment sizing. BioTechniques 31:793–800PubMedGoogle Scholar
  4. Brondani C, Brondani RPV, Rangel PHN et al (2001) Development and mapping of Oryza glumaepatula-derived microsatellite markers in the interspecific cross Oryza glumaepatula × O. sativa. Hereditas 134:59–71PubMedCrossRefGoogle Scholar
  5. Brondani C, Rangel PHN, Brondani RPV et al (2002) QTL mapping and introgression of yield-related traits from O. glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203PubMedCrossRefGoogle Scholar
  6. Brondani RPV, Zucchi MI, Brondani C et al (2005) Genetic structure of wild rice Oryza glumaepatula populations in three Brazilian biomes using microsatellite markers. Genetica 125:115–123PubMedCrossRefGoogle Scholar
  7. Brondani C, Borba TCO, Rangel PHN et al (2006) Determination of genetic variability of traditional varieties of Brazilian rice using microsatellite markers. Genet Mol Biol 29:676–684CrossRefGoogle Scholar
  8. Buso GSC, Rangel PH, Ferreira ME (1998) Analysis of genetic variability of South American wild rice populations (Oryza glumaepatula) with isozymes and RAPD markers. Mol Ecol 7:107–117CrossRefGoogle Scholar
  9. Chabane K, Ablett GA, Cordeiro GM et al (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Res Crop Evol 52:903–909CrossRefGoogle Scholar
  10. Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  11. Gao LZ (2004) Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): a region-wide perspective from microsatellite variation. Mol Ecol 13:1009–1024PubMedCrossRefGoogle Scholar
  12. Gao LZ (2005) Microsatellite variation within and among populations of Oryza officinalis (Poaceae), an endangered wild rice from China. Mol Ecol 14:4287–4297PubMedCrossRefGoogle Scholar
  13. Gao LZ, Schaal B, Zhang CH et al (2002) Assessment of population genetic structure of common wild rice Oryza rufipogon Griff. detected by microsatellite DNA and allozyme loci. Theor Appl Genet 106:173–180PubMedGoogle Scholar
  14. Jain S, Jain RK, McCouch SR (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 109:965–977PubMedCrossRefGoogle Scholar
  15. Junk JW, Cunha CN, Wantzen KM et al (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309CrossRefGoogle Scholar
  16. Kang HW, Cho YG, Yoon UH (1998) A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed. Plant Mol Biol Rep 16:1–9CrossRefGoogle Scholar
  17. Karasawa MMG, Vencovsky R, Silva CM et al (2007a) Genetic structure of South American Oryza glumaepatula Steud. populations using microsatellite molecular markers. Genet Mol Biol 30:400–410CrossRefGoogle Scholar
  18. Karasawa MMG, Vencovsky R, Silva CM et al (2007b) Mating system of Brazilian Oryza glumaepatula Steud. populations detected with microsatellite markers. Ann Bot 99:245–253PubMedCrossRefGoogle Scholar
  19. Kuroda Y, Sato Y, Bounphanousay C et al (2007) Genetic structure of three Oryza AA genome species (O. rufipogon, O. nivara and O. sativa) as assessed by SSR analysis on the Vientiane Plain of Laos. Conserv Genet 8:149–158CrossRefGoogle Scholar
  20. Leigh F, Lea V, Law J et al (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366CrossRefGoogle Scholar
  21. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c), available via DIALOG http://lewis.eeb.uconn.edu/lewishome/software.html Accessed 8 Nov 2007
  22. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  23. MaCkay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291CrossRefGoogle Scholar
  24. Margules C, Pressey RL (2000) Systematic planning for biodiversity conservation. Nature 405:243–253PubMedCrossRefGoogle Scholar
  25. Meir E, Andelman S, Possingham HP (2004) Does conservation planning matter in a dynamic and uncertain world? Ecol Letters 7:615–622CrossRefGoogle Scholar
  26. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  27. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  28. Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607PubMedGoogle Scholar
  29. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Available via DIALOG http://darwin.cirad.fr/darwin Accessed 8 Nov 2007
  30. Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New York, pp 291–306CrossRefGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–995PubMedGoogle Scholar
  32. Rangel PN (2005) Construção de mapa de ligação e mapeamento de QTLs utilizando marcadores SSRs, ESTs e SNPs em cruzamento interespecífico Oryza glumaepatula e Oryza sativa. Dissertation, Universidade Federal de GoiásGoogle Scholar
  33. Rangel PHN, Brondani C, Fonseca JR (2006) Mapeamento da distribuição geográfica das espécies brasileiras de Oryza, com vistas à conservação dos parentes silvestres e das variedades crioulas de arroz (O. sativa L.). In: Coradin L (ed) Parentes silvestres das espécies de plantas cultivadas, vol 1. Ministério do Meio Ambiente, Brasília, pp 16–19Google Scholar
  34. Rohlf FJ (1989) NTSYS-Pc: numerical taxonomy and multivariate analysis system (version 2.02). Exeter Publisher, New YorkGoogle Scholar
  35. Rosa M, Santos PP, Veasey EA (2006) Caracterização agromorfológica interpopulacional em Oryza glumaepatula, vol 65. Bragantia, Campinas, pp 1–10Google Scholar
  36. Sánchez E, Espinoza AM (2003) Ultrastructure of Oryza glumaepatula, a wild rice species endemic of tropical America. Rev Biol Trop 53:15–22Google Scholar
  37. Semon M, Nielsen R, Jones MP et al (2004) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647PubMedCrossRefGoogle Scholar
  38. Slatkin M (1985) Rare alleles as an indicator of gene flow. Evolution 39:53–65CrossRefGoogle Scholar
  39. Song ZP, Xu X, Wang B et al (2003) Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet 107:1492–1499PubMedCrossRefGoogle Scholar
  40. Temnykh S, Park WD, Ayres N et al (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  41. Wright S (1978) Evolution and the genetics of populations, vol. 4: variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar
  42. Xu X, Lu B-R, Chen YH et al (2006) Inferring population history from fine-scale spatial genetic analysis in Oryza rufipogon (Poaceae). Mol Ecol 5:1535–1544CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ana Rosa de Campos Vaz
    • 1
    • 2
  • Tereza Cristina de Oliveira Borba
    • 1
  • Claudio Brondani
    • 1
  • Paulo Hideo Nakano Rangel
    • 1
  • Graziela Silvia de Oliveira Camargo
    • 3
  • Mariana Pires de Campos Telles
    • 4
  • José Alexandre Felizola Diniz Filho
    • 5
  • Rosana Pereira Vianello Brondani
    • 1
  1. 1.Laboratório de Biotecnologia Vegetal, EmbrapaCentro Nacional de Pesquisa de Arroz e FeijãoGoiâniaBrazil
  2. 2.Departamento de BiologiaUniversidade Católica de GoiásGoiâniaBrazil
  3. 3.Departamento de BiologiaUniversidade Anhanguera Centro Universitário de GoiásGoiâniaBrazil
  4. 4.Departamento de ZootecniaUniversidade Católica de GoiásGoiâniaBrazil
  5. 5.Departamento de Ecologia e EvoluçãoUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations