, Volume 138, Issue 1, pp 27–35 | Cite as

On the function of cornuti, sclerotized structures of the endophallus of Lepidoptera

  • Carlos Cordero


The genitalia of many male insects include structures whose functions are unknown or poorly understood. The endophallus of many Lepidoptera bears sclerotized structures known as cornuti, which in some species break off during copulation and remain within the female genital tract (“deciduous” cornuti). I describe previous and original hypotheses on the role of cornuti, identify the selective pressures invoked by these hypotheses, propose different ways of testing them and briefly review pertinent evidence. I describe ten functional hypotheses for non-deciduous cornuti and four for deciduous cornuti; six hypotheses invoke natural selection and eight involve sexual selection. In some cases more than one of the proposed functions could be performed by cornuti; evolutionary change from one function to another is also possible. I suggest that the wide morphological variation observed in non-deciduous cornuti across taxa supports hypotheses invoking sexual selection. I propose that the function and evolution of cornuti can be revealed with a combination of descriptive studies, cornuti removal experiments and comparative tests.


Genitalia Sexual coevolution Sexual selection 



I thank Lizeth Abundis, Constantino Macías and two anonymous reviewers for thoughtful comments on a first version of the manuscript. Tino Macías outlined hypothesis H10 and kindly allowed me to include it here. Raúl Martínez provided technical help. For permission to reproduce photographs and drawings I thank Drs. Lars Crabo (Fig. 1b), Kirby Wolfe (Fig. 1c), and Zoltan Varga, Lázló Ronkay and the Acta Zoologica Academiae Scientiarum Hungaricae (Fig. 1a). My research is supported by a grant from PAPIIT-UNAM (IN223508). I dedicate this paper to my friend and mentor William G. Eberhard.


  1. Avise JC (2006) Evolutionary pathways in nature. A phylogenetic approach. Cambridge University Press, CambridgeGoogle Scholar
  2. Brown JW, Cramer A (1999) Five new species of Argyrotaenia (Tortricidae: Archipini) from Mexico and the southwestern United States. J Lepid. Soc 53:114–125Google Scholar
  3. Callahan PS (1958) Serial morphology as a technique for determination of reproductive patterns in the corn earworm, Heliotis zea (Boddie). Ann Entomol Soc Am 51:413–428Google Scholar
  4. Callahan PS, Chapin JB (1960) Morphology of the reproductive systems and mating in two representative members of the family Noctuidae, Pseudaletia unipuncta and Peridroma margaritosa, with comparison to Heliotis zea. Ann Entomol Soc Am 53:763–782Google Scholar
  5. Choi S-W (2001) Phylogeny of Eulithis Hübner and related genera (Lepidoptera: Geometridae), with an implication of wing pattern evolution. Am Mus Novit 3318:1–37. doi: 10.1206/0003-0082(2001)318<0001:POEHBA>2.0.CO;2 CrossRefGoogle Scholar
  6. Cordero C (1999) Is spermatophore number a good measure of mating frequency in female Callophrys xami (Lycaenidae)? J Lepid. Soc 53:170–171Google Scholar
  7. Cordero C (2005) The evolutionary origin of signa in female Lepidoptera: natural and sexual selection hypotheses. J Theor Biol 232:443–449. doi: 10.1016/j.jtbi.2004.08.031 CrossRefPubMedGoogle Scholar
  8. Cordero C, Eberhard WG (2003) Female choice of sexually antagonistic male adaptations: a critical review of some recent research. J Evol Biol 16:1–6. doi: 10.1046/j.1420-9101.2003.00506.x CrossRefPubMedGoogle Scholar
  9. Cordero C, Eberhard WG (2005) Interaction between sexually antagonistic selection and mate choice in the evolution of female responses to male traits. Evol Ecol 19:111–122. doi: 10.1007/s10682-004-7918-2 CrossRefGoogle Scholar
  10. Crabo L, Hammond PC (1995/1997) A revision of Mesogona Boisduval (Lepidoptera: Noctuidae) for North America with descriptions of two new species. J Res Lepid 34:83–98Google Scholar
  11. Drummond BAIII (1984) Multiple mating and sperm competition in the Lepidoptera. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic Press, Orlando, FL, pp 291–371Google Scholar
  12. Duckworth WD (1971) Neotropical microlepidoptera XX: revision of the genus Setiostoma (Lepidoptera: Stetiomidae). Smithson Contrib Zool 106:1–45Google Scholar
  13. Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge, MAGoogle Scholar
  14. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, NJGoogle Scholar
  15. Galicia I, Sánchez V, Cordero C (2008) On the function of signa, a genital trait of female Lepidoptera. Ann Entomol Soc Am 101:786–793. doi: 10.1603/0013-8746(2008)101[786:OTFOSA]2.0.CO;2 CrossRefGoogle Scholar
  16. Gilligan TM, Wenzel JW (2008) Extreme intraspecific variation in Hystrichophora (Lepidoptera: Tortricidae) genitalia—questioning the lock-and-key hypothesis. Ann Zool Fenn 45:465–477Google Scholar
  17. Hinton HE (1964) Sperm transfer in insects and the evolution of haemocelic insemination. In: Highnam KC (ed) Insect reproduction. London, UK: Symposium of the Royal Entomological Society of London, pp 95–107Google Scholar
  18. Holland B, Rice WR (1998) Chase-away sexual selection: antagonistic seduction versus resistance. Evol Int J Org Evol 52:1–7. doi: 10.2307/2410914 Google Scholar
  19. Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93. doi: 10.1016/j.tree.2003.11.012 CrossRefPubMedGoogle Scholar
  20. Iruegas R, Gómez B, Cruz-López L, Malo EA, Rojas JC (2002) A new record of a moth attacking sapodilla, with descriptions of female genitalia and the last instar larva. Fla Entomol 85:394–397. doi: 10.1653/0015-4040(2002)085[0394:ANROAM]2.0.CO;2 CrossRefGoogle Scholar
  21. Klots AB (1970) Lepidoptera. In: Tuxen SL (ed) Taxonomist’ glossary of genitalia in insects, 2nd edn. Munksgaard, Copenhagen, pp 115–130Google Scholar
  22. Lemaire C, Wolfe KL (1988/1989) Three new species of Paradirphia (Saturniidae: Hemilueucinae) from Mexico and Central America with notes on the immature stages. J Res Lepid 27:197–212Google Scholar
  23. Mikkola K (1992) Evidence for lock-and-key mechanisms in the internal genitalia of the Apamaea moths (Lepidoptera, Noctuidae). Syst Entomol 17:145–153. doi: 10.1111/j.1365-3113.1992.tb00327.x CrossRefGoogle Scholar
  24. Mikkola K (1993) The lock-and-key mechanisms of the internal genitalia of the noctuid and geometrid moths (Lepidoptera) in relation to the speciation concepts. Folia Baeriana 6:149–157Google Scholar
  25. Mikkola K (2007) The rise of eversion techniques in lepidopteran taxonomy (Insecta: Lepidoptera). SHILAP Rev Lepid 35:335–345Google Scholar
  26. Mikkola K (2008) The lock-and-key mechanisms of the internal genitalia of the Noctuidae (Lepidoptera): how are they selected for? Eur J Entomol 105:13–25Google Scholar
  27. Miller WE (1978) Larisa subsolana, a new genus and species from Eastern North America (Olethreutidae). J Lepid. Soc 32:256–260Google Scholar
  28. Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci 255:37–45. doi: 10.1098/rspb.1994.0006 CrossRefGoogle Scholar
  29. Penz CM, DeVries PJ (1999) Preliminary assessment of the tribe Lemoniini (Lepidoptera: Lycaenidae) based on adult morphology. Am Mus Novit 3284:1–32Google Scholar
  30. Powell JA (1973) A systematic monograph of New World Ethmiid moths (Lepidoptera: Gelechioidea). Smithson Contrib Zool 120:1–302Google Scholar
  31. Powell JA (2003) Lepidoptera (moths and butterflies). In: Vincent VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, New York, pp 631–664Google Scholar
  32. Rawlins JE, Miller JS (2008) Dioptine moths of the Caribbean region: description of two new genera with notes on biology and biogeography (Lepidoptera: Notodontidae: Dioptinae). Ann Carnegie Mus 76:203–225. doi: 10.2992/0097-4463(2008)76[203:DMOTCR]2.0.CO;2 CrossRefGoogle Scholar
  33. Robbins RK, Duarte M (1999/2005) Two phylogenetically significant new species of Calycopis (Lycaenidae: Theclinae: Eumeini). J Res Lepid 38:27–34Google Scholar
  34. Scoble MJ (1992) The Lepidoptera. Oxford University Press, OxfordGoogle Scholar
  35. Shapiro AM, Porter AH (1989) The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Annu Rev Entomol 34:231–245. doi: 10.1146/annurev.en.34.010189.001311 CrossRefGoogle Scholar
  36. Sihvonen P (2007) Mating behaviour and copulation mechanisms in the genus Scopula (Geometridae: Sterrhynae). Nota Lepid 30:299–313Google Scholar
  37. Torres-Vila LM, Rodríguez-Molina MC, Jennions MD (2004) Polyandry and fecundity in the Lepidoptera: can methodological and conceptual approaches bias outcomes? Behav Ecol Sociobiol 55:315–324. doi: 10.1007/s00265-003-0712-2 CrossRefGoogle Scholar
  38. Tuxen SL (ed) (1970) Taxonomist’ glossary of genitalia in insects, 2nd edn. Munksgaard, CopenhagenGoogle Scholar
  39. Varga Z, Ronkay L (2007) On the taxonomy of the genus Diarsia Hübner, [1821] 1816 (Lepidoptera: Noctuidae): the Holartic species-groups of the genus. Acta Zool Academ Sci Hung 53(suppl. 1):141–209Google Scholar
  40. Watson A (1971) An illustrated catalog of the Neotropic Arctiinae types in the United States National Museum (Lepidoptera: Arctiidae). Part I. Smithson Contrib Zool 50:1–361Google Scholar
  41. Werner M, Simmons LW (2008) The evolution of male genitalia: functional integration of genital sclerites in the dung beetle Onthophagus taurinus. Biol J Linn Soc Lond 93:257–262CrossRefGoogle Scholar
  42. Wright DJ (2008) Neartic Eucosmini (Tortricidae) associated with Pelochrista occipitana (Zeller) and Eucosma biquadrana (Walshingham): two new synonymies and four new species. J Lepid. Soc 62:216–231Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico

Personalised recommendations