Advertisement

Genetica

, Volume 137, Issue 1, pp 87–97 | Cite as

Infestation of a novel host plant by Tephritis conura (Diptera: Tephritidae) in northern Britain: host-range expansion or host shift?

  • Thorsten Diegisser
  • Christian Tritsch
  • Alfred Seitz
  • Jes Johannesen
Article

Abstract

The addition of a novel host plant to a phytophagous insect’s diet may result in subsequent host-plant specialisation, and is believed to be a key cause for speciation in this trophic group. In northern Britain, the tephritid fly Tephritis conura has experienced a unique host-plant expansion, from the melancholy thistle Cirsium heterophyllum to the marsh thistle C. palustre. Here, we examine whether the incorporation of C. palustre in the repertoire of British T. conura flies has caused genetic divergence between populations infesting the old host and the novel host, and how British populations differ from populations infesting C. heterophyllum in continental Europe where C. palustre is not infested. No evidence for restricted gene flow among British C. palustre and C. heterophyllum flies was found. Significant differentiation between British and continental T. conura was found at only one allozyme locus, hexokinase, and caused by a new allele, Hex_95. Hexokinase is related to host-race formation in continental European flies infesting C. heterophyllum and C. oleraceum, and might be linked to loci determining host choice. Based on morphological and phenological data from previous studies, we suggest that T. conura in Britain has adapted to the novel host but that host-race formation is impeded by similar plant phenologies.

Keywords

Allozymes Cirsium heterophyllum Cirsium palustre Hexokinase Host plant Host race mtDNA Natural selection 

Notes

Acknowledgments

We thank Richard Abbott and Richard Milne for providing information on plant distributions in Britain. This study was supported by the Deutsche Forschungsgemeinschaft (DFG Se506/10-1) to J.J. and A.S.

References

  1. Beckenbach AT, Prakash S (1977) Examination of allelic variation at the hexokinase loci of Drosophila pseudoobscura and D. persimils by different methods. Genetics 87:743–761PubMedGoogle Scholar
  2. Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 47:773–815. doi: 10.1146/annurev.ento.47.091201.145312 PubMedCrossRefGoogle Scholar
  3. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman and Hall, New YorkGoogle Scholar
  4. Bubliy OA, Kalabushkin BA, Imasheva AG (1999) Geographic variation of six allozyme loci in Drosophila melanogaster: an analysis of data from different continents. Hereditas 130:25–32. doi: 10.1111/j.1601-5223.1999.00025.x PubMedCrossRefGoogle Scholar
  5. Bush GL (1969) Sympatric host-race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evol Int J Org Evol 23:237–251. doi: 10.2307/2406788 Google Scholar
  6. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x PubMedCrossRefGoogle Scholar
  7. Craig TP, Itami JK, Abrahamson WG, Horner JD (1993) Behavioral evidence for host-race formation in Eurosta solidaginis. Evol Int J Org Evol 47:1696–1710. doi: 10.2307/2410214 Google Scholar
  8. Dambroski HR, Feder JL (2007) Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development. J Evol Biol 20:2101–2112. doi: 10.1111/j.1420-9101.2007.01435.x PubMedCrossRefGoogle Scholar
  9. Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu Rev Entomol 40:297–331. doi: 10.1146/annurev.en.40.010195.001501 CrossRefGoogle Scholar
  10. Diegisser T, Johannesen J, Lehr C, Seitz A (2004) Genetic and morphological differentiation in Tephritis bardanae (Diptera: Tephritidae): evidence for host-race formation. J Evol Biol 17:83–93. doi: 10.1046/j.1420-9101.2003.00637.x PubMedCrossRefGoogle Scholar
  11. Diegisser T, Seitz A, Johannesen J (2006a) Phylogeographic patterns of host-race evolution in Tephritis conura (Diptera: Tephritidae). Mol Ecol 15:681–694. doi: 10.1111/j.1365-294X.2006.02792.x PubMedCrossRefGoogle Scholar
  12. Diegisser T, Johannesen J, Seitz A (2006b) The role of geographic setting on the diversification process among Tephritis conura (Tephritidae) host-races. Heredity 96:410–418. doi: 10.1038/sj.hdy.6800821 PubMedCrossRefGoogle Scholar
  13. Diegisser T, Seitz A, Johannesen J (2007) Morphological adaptation in host races of Tephritis conura. Entomol Exp Appl 122:155–164. doi: 10.1111/j.1570-7458.2006.00501.x CrossRefGoogle Scholar
  14. Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29:471–504. doi: 10.1146/annurev.en.29.010184.002351 CrossRefGoogle Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  16. Feder JL, Hunt TA, Bush L (1993) The effects of climate, host plant phenology and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella. Entomol Exp Appl 69:117–135. doi: 10.1007/BF02380639 CrossRefGoogle Scholar
  17. Feder JL, Stolz U, Lewis KM, Perry W, Roethele JB, Rogers A (1997) The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evol Int J Org Evol 51:1862–1876. doi: 10.2307/2411008 Google Scholar
  18. Feder JL, Berlocher SH, Opp SB (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D. In: Mopper S, Strauss SY (eds) Genetic structure and local adaptation in natural insect populations. Effects of ecology, life history and behavior. Chapman and Hall, New York, pp 408–434Google Scholar
  19. Felsenstein J (1993) PHYLIP (phylogeny inference package) version 3.5c. Computer program distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  20. Gassmann AJ, Levy A, Tran T, Futuyma DJ (2006) Adaptations of an insect to a novel host plant: a phylogenetic approach. Funct Ecol 20:478–485. doi: 10.1111/j.1365-2435.2006.01118.x CrossRefGoogle Scholar
  21. Groman JD, Pellmyr O (2000) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236. doi: 10.1046/j.1420-9101.2000.00159.x CrossRefGoogle Scholar
  22. Hare JD (1990) Ecology and management of the Colorado potato beetle. Annu Rev Entomol 35:81–100. doi: 10.1146/annurev.en.35.010190.000501 CrossRefGoogle Scholar
  23. Hebert PDN, Beaton MJ (1989) Methodologies for allozyme analysis using cellulose acetate electrophoresis. A practical handbook. Educational Service of Helena Laboratories, BeaumontGoogle Scholar
  24. Hegi G (1979) Illustrierte flora mitteleuropas. Band 6. J. F. Lehmanns Verlag, MünchenGoogle Scholar
  25. Horner JD, Craig TP, Itami JK (1999) The influence of oviposition phenology on survival in host races of Eurosta solidaginis. Entomol Exp Appl 93:121–129. doi: 10.1023/A:1003833729585 CrossRefGoogle Scholar
  26. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversity of plant feeding insects. BMC 6:4. doi: 10.1186/1471-2210-6-4 CrossRefGoogle Scholar
  27. Johannesen J, Tritsch C, Seitz A, Diegisser T (2008) Genetic structure of Cirsium palustre (Asteraceae) and its role in host diversification of Tephritis conura (Diptera: Tephritidae). Biol J Linn Soc Lond 95:221–232. doi: 10.1111/j.1095-8312.2008.01047.x CrossRefGoogle Scholar
  28. Komma M (1990) Der Pflanzenparasit Tephritis conura und die Wirtsgattung Cirsium. Ph.D. thesis, University of Bayreuth, GermanyGoogle Scholar
  29. Leclaire M, Brandl R (1994) Phenotypic plasticity and nutrition in a phytophagous insect: consequences of colonizing a new host. Oecologia 100:379–385. doi: 10.1007/BF00317858 CrossRefGoogle Scholar
  30. Malpica JM, Vassallo JM (1980) A test for the selective origin of environmentally correlated allozyme patterns. Nature 286:407–408. doi: 10.1038/286407a0 CrossRefGoogle Scholar
  31. McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci USA 104:4996–5001. doi: 10.1073/pnas.0608424104 PubMedCrossRefGoogle Scholar
  32. McKenzie JA, McKechnie SW, Batterham P (1994) Perturbation of gene frequencies in a natural population of Drosophila melanogaster: evidence for selection at the Adh locus. Genetica 92:187–196. doi: 10.1007/BF00132537 PubMedCrossRefGoogle Scholar
  33. McPheron BA, Smith DC, Berlocher SH (1988) Microgeographic genetic variation in the apple maggot Rhagoletis pomonella. Genetics 119:445–451PubMedGoogle Scholar
  34. Menken SBJ, Herrebout WM, Wiebes JT (1992) Small ermine moths (Yponomeuta): their host relations and evolution. Annu Rev Entomol 37:41–88. doi: 10.1146/annurev.en.37.010192.000353 CrossRefGoogle Scholar
  35. Päivinen J, Grapputo A, Kaitala V, Komonen A, Kotiaho JS, Saarinen K, Wahlberg N (2005) Negative density–distribution relationship in butterflies. BMC Biol 3:5. doi: 10.1186/1741-7007-3-5 PubMedCrossRefGoogle Scholar
  36. Posada D (2000) Testing geographic association—Chiperm version 1.2. Department of biology. Brigham Young University, ProvoGoogle Scholar
  37. Rausher MD (1984) Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttata. Evol Int J Org Evol 38:582–595. doi: 10.2307/2408708 Google Scholar
  38. Raymond M, Rousset F (2000) GENEPOP. Version 3.2. Distributed by the authors. Institut des Sciences de l’Evolution, Universite de Montpellier II, FranceGoogle Scholar
  39. Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: chi-square and the problem of small samples. Mol Biol Evol 6:539–545PubMedGoogle Scholar
  40. Romstöck M, Arnold H (1987) Populationsökologie und Wirtswahl bei Tephritis conura Loew-Biotypen (Dipt.: Tephritidae). Zool Anz 219:83–120Google Scholar
  41. Romstöck-Völkl M (1997) Host race formation in Tephritis conura: determinants from three trophic levels. Ecol Stud 130:21–38Google Scholar
  42. Romstöck-Völkl M, Wissel C (1989) Spatial and seasonal patterns in the egg distribution of Tephritis conura Loew (Diptera: Tephritidae). Oikos 55:165–174. doi: 10.2307/3565420 CrossRefGoogle Scholar
  43. Rosenthal GA, Berenbaum MR (eds) (1992) Herbivores: their interaction with secondary plant metabolites, 2nd edn. Academic Press, San DiegoGoogle Scholar
  44. Scheffer SJ, Hawthorne DJ (2007) Molecular evidence of host-associated genetic divergence in the holly leafminer Phytomyza glabricola (Diptera: Agromyzidae): apparent discordance among marker systems. Mol Ecol 16:2627–2637. doi: 10.1111/j.1365-294X.2007.03303.x PubMedCrossRefGoogle Scholar
  45. Schwarz D, McPheron B, Hartl GB, Boller EF, Hoffmeister TS (2003) A second case of genetic host races in Rhagoletis? A population genetic comparison of sympatric host populations in the European cherry fruit fly Rhagoletis cerasi. Entomol Exp Appl 108:11–17. doi: 10.1046/j.1570-7458.2003.00065.x CrossRefGoogle Scholar
  46. Seitz A, Komma M (1984) Genetic polymorphism and its ecological background in Tephritid populations (Diptera: Tephritidae). In: Wöhrmann K, Loeschke V (eds) Populations biology and evolution. Springer, Berlin, pp 143–158Google Scholar
  47. Siegismund HR (1993) G-Stat. Genetical statistical programs for the analysis of population data. Version 3. The Arboretum Royal Veterinary and Agricultural University, HorsholmGoogle Scholar
  48. StatSoft Inc (2004) STATISTICA für Windows [Software-System für datenanalyse] version 6. www.statsoft.com
  49. Stireman JOIII, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evol Int J Org Evol 59:2573–2587Google Scholar
  50. Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  51. Tritsch C (2005) Genetische Untersuchungen zur regionalen Befallsdifferenzen von Tephritis conura auf Cirsium palustre. M.Sc. Thesis, University of Mainz, GermanyGoogle Scholar
  52. Vaupel A, Klinge K, Brändle M, Wissemann V, Tscharntke T, Brandl R (2007) Genetic differentiation between populations of the European rose hip fly Rhagoletis alternate. Biol J Linn Soc Lond 90:619–625. doi: 10.1111/j.1095-8312.2007.00751.x CrossRefGoogle Scholar
  53. Via S (1990) Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu Rev Entomol 35:421–4446. doi: 10.1146/annurev.en.35.010190.002225 PubMedCrossRefGoogle Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  55. Zwölfer H (1988) Evolutionary and ecological relationships among the insect fauna of thistles. Annu Rev Entomol 33:103–122. doi: 10.1146/annurev.en.33.010188.000535 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thorsten Diegisser
    • 1
  • Christian Tritsch
    • 1
  • Alfred Seitz
    • 1
  • Jes Johannesen
    • 1
  1. 1.Institut für Zoologie, Abt. V ÖkologieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations