Genetica

, Volume 137, Issue 1, pp 77–86 | Cite as

Molecular evolution of PKD2 gene family in mammals

Article

Abstract

PKD2 gene encodes a critical cation channel protein that plays important roles in various developmental processes and is usually evolutionarily conserved. In the present study, we analyzed the evolutionary patterns of PKD2 and its homologous genes (PKD2L1, PKD2L2) from nine mammalian species. In this study, we demonstrated the orthologs of PKD2 gene family evolved under a dominant purifying selection force. Our results in combination with the reported evidences from functional researches suggested the entire PKD2 gene family are conserved and perform essential biological roles during mammalian evolution. In rodents, PKD2 gene family members appeared to have evolved more rapidly than other mammalian lineages, probably resulting from relaxation of purifying selection. However, positive selection imposed on synonymous sites also potentially contributed to this case. For the paralogs, our results implied that PKD2L2 genes evolved under a weaker purifying selection constraint than PKD2 and PKD2L1 genes. Interestingly, some loop regions of transmembrane domain of PKD2L2 exhibited higher P N/P S ratios than expected, suggesting these regions are more functional divergent in organisms and worthy of special attention.

Keywords

PKD2 gene family Mammalian Evolutionary patterns Rodents 

Notes

Acknowledgments

This work was supported by a grant of the National Key Basic Research Program of China to Prof. Qin Zhou (2005CB522506) and a grant of the National Key Basic Research Program of China to academician Yuquan Wei (2004CB518800). The work was also supported by a grant of the S&T Bureau of Sichuan Province to Qin Zhou.

Supplementary material

10709_2009_9352_MOESM1_ESM.pdf (49 kb)
(PDF 49 kb)

References

  1. Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53. doi: 10.1093/molbev/msl150 PubMedCrossRefGoogle Scholar
  2. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565. doi: 10.1074/jbc.274.40.28557 PubMedCrossRefGoogle Scholar
  3. Cantiello HF (2004) Regulation of calcium signaling by polycystin-2. Am J Physiol Renal Physiol 286:F1012–F1029. doi: 10.1152/ajprenal.00181.2003 PubMedCrossRefGoogle Scholar
  4. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401:383–386PubMedGoogle Scholar
  5. Chen FC, Chen CJ, Li WH, Chuang TJ (2007) Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res 17:16–22. doi: 10.1101/gr.5429606 PubMedCrossRefGoogle Scholar
  6. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451:264–276. doi: 10.1007/s00424-005-1431-5 PubMedCrossRefGoogle Scholar
  7. Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283. doi: 10.1074/jbc.M110483200 PubMedCrossRefGoogle Scholar
  8. Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wyckoff GJ, Malcom CM, Lahn BT (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119:1027–1040. doi: 10.1016/j.cell.2004.11.040 PubMedCrossRefGoogle Scholar
  9. Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101:9033–9038. doi: 10.1073/pnas.0402591101 PubMedCrossRefGoogle Scholar
  10. Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342. doi: 10.1056/NEJM199307293290508 PubMedCrossRefGoogle Scholar
  11. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187. doi: 10.1073/pnas.021456598 PubMedCrossRefGoogle Scholar
  12. Gu X, Li WH (1992) Higher rates of amino acid substitution in rodents than in humans. Mol Phylogenet Evol 1:211–214. doi: 10.1016/1055-7903(92)90017-B PubMedCrossRefGoogle Scholar
  13. Hateboer N, Veldhuisen B, Peters D, Breuning MH, San-Millan JL, Bogdanova N, Coto E, van Dijk MA, Afzal AR, Jeffery S, Saggar-Malik AK, Torra R, Dimitrakov D, Martinez I, de Castro SS, Krawczak M, Ravine D (2000) Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 57:1444–1451. doi: 10.1046/j.1523-1755.2000.00989.x PubMedCrossRefGoogle Scholar
  14. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of shaker potassium channel inactivation. Science 250:533–538. doi: 10.1126/science.2122519 PubMedCrossRefGoogle Scholar
  15. Huang CL (2004) The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 15:1690–1699. doi: 10.1097/01.ASN.0000129115.69395.65 PubMedCrossRefGoogle Scholar
  16. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938. doi: 10.1038/nature05084 PubMedCrossRefGoogle Scholar
  17. Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL (2007) Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 179:501–514. doi: 10.1083/jcb.200704069 PubMedCrossRefGoogle Scholar
  18. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103:12569–12574. doi: 10.1073/pnas.0602702103 PubMedCrossRefGoogle Scholar
  19. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405. doi: 10.1016/S0968-0004(98)01285-7 PubMedCrossRefGoogle Scholar
  20. Li Y, Ye C, Shi P, Zou XJ, Xiao R, Gong YY, Zhang YP (2005) Independent origin of the growth hormone gene family in new world monkeys and old world monkeys/hominoids. J Mol Endocrinol 35:399–409. doi: 10.1677/jme.1.01778 PubMedCrossRefGoogle Scholar
  21. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155. doi: 10.1126/science.290.5494.1151 PubMedCrossRefGoogle Scholar
  22. Makalowski W, Boguski MS (1998) Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci USA 95:9407–9412. doi: 10.1073/pnas.95.16.9407 PubMedCrossRefGoogle Scholar
  23. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342. doi: 10.1126/science.272.5266.1339 PubMedCrossRefGoogle Scholar
  24. Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177–180. doi: 10.1038/ng1159 PubMedCrossRefGoogle Scholar
  25. Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639. doi: 10.1016/j.tig.2004.09.005 PubMedCrossRefGoogle Scholar
  26. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217. doi: 10.1152/physrev.00021.2006 PubMedCrossRefGoogle Scholar
  27. Podlaha O, Zhang J (2003) Positive selection on protein-length in the evolution of a primate sperm ion channel. Proc Natl Acad Sci USA 100:12241–12246. doi: 10.1073/pnas.2033555100 PubMedCrossRefGoogle Scholar
  28. Podlaha O, Webb DM, Tucker PK, Zhang J (2005) Positive selection for indel substitutions in the rodent sperm protein catsper1. Mol Biol Evol 22:1845–1852. doi: 10.1093/molbev/msi178 PubMedCrossRefGoogle Scholar
  29. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled–coil domain. Nat Genet 16:179–183. doi: 10.1038/ng0697-179 PubMedCrossRefGoogle Scholar
  30. Rasmussen MD, Kellis M (2007) Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes. Genome Res 17:1932–1942. doi: 10.1101/gr.7105007 PubMedCrossRefGoogle Scholar
  31. Resch AM, Carmel L, Marino-Ramirez L, Ogurtsov AY, Shabalina SA, Rogozin IB, Koonin EV (2007) Widespread positive selection in synonymous sites of mammalian genes. Mol Biol Evol 24:1821–1831PubMedCrossRefGoogle Scholar
  32. Rooney AP, Zhang J (1999) Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol Biol Evol 16:706–710PubMedGoogle Scholar
  33. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi: 10.1093/bioinformatics/btg359 PubMedCrossRefGoogle Scholar
  34. Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. doi: 10.1093/nar/15.3.1281 PubMedCrossRefGoogle Scholar
  35. Stekrova J, Reiterova J, Merta M, Damborsky J, Zidovska J, Kebrdlova V, Kohoutova M (2004) PKD2 mutations in a Czech population with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 19:1116–1122. doi: 10.1093/ndt/gfh083 PubMedCrossRefGoogle Scholar
  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  37. Torres VE (1999) Extrarenal manifestations of autosomal dominant polycystic kidney disease. Am J Kidney Dis 34:xlv–xlviii. doi: 10.1016/S0272-6386(99)70001-6 PubMedCrossRefGoogle Scholar
  38. Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872. doi: 10.1038/sj.ejhg.5200383 PubMedCrossRefGoogle Scholar
  39. Waddell PJ, Kishino H, Ota R (2007) Phylogenetic methodology for detecting protein interactions. Mol Biol Evol 24:650–659. doi: 10.1093/molbev/msl193 PubMedCrossRefGoogle Scholar
  40. Wallis M (1994) Variable evolutionary rates in the molecular evolution of mammalian growth hormones. J Mol Evol 38:619–627. doi: 10.1007/BF00175882 PubMedCrossRefGoogle Scholar
  41. Wallis M (2000) Episodic evolution of protein hormones: molecular evolution of pituitary prolactin. J Mol Evol 50:465–473PubMedGoogle Scholar
  42. Weinreich DM (2001) The rates of molecular evolution in rodent and primate mitochondrial DNA. J Mol Evol 52:40–50PubMedGoogle Scholar
  43. Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca-Prados M, Somlo S (1998) Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54:564–568. doi: 10.1006/geno.1998.5618 PubMedCrossRefGoogle Scholar
  44. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in PKD2. Nat Genet 24:75–78. doi: 10.1038/71724 PubMedCrossRefGoogle Scholar
  45. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373. doi: 10.1093/jhered/92.4.371 PubMedCrossRefGoogle Scholar
  46. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chun Ye
    • 1
    • 2
  • Huan Sun
    • 1
  • Wenhu Guo
    • 2
  • Yuquan Wei
    • 1
  • Qin Zhou
    • 1
  1. 1.State Key Laboratory of Biotherapy, West China Hospital, West China Medical School and College of Life ScienceSichuan UniversityChengduPeople’s Republic of China
  2. 2.School of BioengineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations