Advertisement

Genetica

, Volume 136, Issue 3, pp 491–500 | Cite as

Genetic differentiation among Greek lake populations of Carassius gibelio and Cyprinus carpio carpio

  • George Tsipas
  • George Tsiamis
  • Kosmas Vidalis
  • Kostas BourtzisEmail author
Article

Abstract

The genetic structure of the Western Greece lake populations of Carassius gibelio and Cyprinus carpio carpio populations was characterized by using a PCR-based RFLP and sequencing analysis of mitochondrial rDNA genes and regions (16S rDNA, cytochrome b and D-loop). Our analysis was able to detect: (a) two haplotypes in C. c. carpio populations and two haplotypes in C. gibelio populations (b) a high nucleotide divergence between the two species and (c) two genetically distinct C. gibelio populations, one existing in the Amvrakia habitat (AMV1) with a second in Ozeros and Trichonida (OZE1 and TRI1) habitat. The present analysis indicates that genetic diversity observed was limited with a haplotype index between 0.0 and 55.6%, and a nucleotide diversity within and among populations between 0.0 and 1.27%. It also underlines a restricted mtDNA-based evaluation of the phylogenetic relationships among C. gibelio and C. c. carpio populations. In addition, the present study contributed knowledge on the genetic variation and structure of these populations which is absolutely necessary for any efficient fish management and/or conservation programme.

Keywords

Carassius gibelio (synonymous Carassius auratus gibelioCyprinus carpio carpio Cyt b D-loop 16S rDNA Genetic diversity RFLP/sequencing analysis 

Abbreviations

cyt b

Cytochrome b

mtDNA

Mitochondrial DNA

NJ

Neighbor joining

MP

Maximum parsimony

PCR

Polymerase chain reaction

TS

Transitions

TV

Transversions

Notes

Acknowledgments

The authors would like to thank Dr. G. Kilias and Dr. V. Papasotiropoulos for their help and fruitful comments on the manuscript. This work was supported in part by intramural funding provided by the Technological Educational Institution (T.E.I.) of Messolonghi (Project 2/16-10-03 from Research Committee) and the University of Ioannina, Greece. The authors would like to thank Prof. William J. Etges and an anonymous reviewer for valuable comments on the manuscript.

References

  1. Allendorf FW, Ryman N, Utter FM (1987) Genetics and fishery management, past, present and future. In: Ryman N, Utter F (eds) Population genetics and fishery management. University of Washington Press, Seattle, pp 1–19Google Scholar
  2. Apostolidis AP, Karakousis Y, Triantaphyllidis C (1996) Genetic differentiation and phylogenetic relationships among Greek Salmo trutta L. (Brown trout) populations as revealed by RFLP analysis of PCR amplified mitochondrial DNA segments. Heredity 77:608–618. doi: 10.1038/hdy.1996.188 PubMedCrossRefGoogle Scholar
  3. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  4. Bernatchez L, Colombani F, Dodson JJ (1991) Phylogenetic relationships among the subfamily Coregonidae as revealed by mtDNA restriction analysis. J Fish Biol 39(suppl. A):283–290. doi: 10.1111/j.1095-8649.1991.tb05091.x CrossRefGoogle Scholar
  5. Bernatchez L, Guyomard R, Bonhomme F (1992) DNA sequence variation of the mitochondrial control region among geography: the mitochondrian remote European brown trout Salmo trutta populations. Mol Ecol 1:161–173. doi: 10.1111/j.1365-294X.1992.tb00172.x PubMedCrossRefGoogle Scholar
  6. Bernatchez L, Glemet H, Wilson CC, Danzmann RG (1995) Introgression and fixation of Arctic charr (Salvelinus alpinus) mitochondrial genome in an allopatric population of brook charr (Salvelinus fontinalis). Can J Fish Aquat Sci 52:179–185. doi: 10.1139/f95-018 CrossRefGoogle Scholar
  7. Billington N, Hebert PDN (1991) Mitochondrial DNA diversity in fishes and its implications for introductions. Can J Fish Aquat Sci 48:80–94Google Scholar
  8. Birky J, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some results. Genetics 103:513–527PubMedGoogle Scholar
  9. Buth DG, Dowling TE, Gold JR (1991) Molecular and cytological investigations. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes: systematics, biology, and exploitation. Chapman & Hall, LondonGoogle Scholar
  10. Cowx IG (1998) Stocking and introduction of fish Oxford: fishing news books. Blackwell, Oxford, pp 1–504Google Scholar
  11. Duvernell D, Aspinwall A (1995) Introgression of Luxilus cornutus mtDNA into allopatric populations of Luxilus chrysochephalus (Teleostei: Cyprinidae) in Missouri and Arkansas. Mol Ecol 4:173–181. doi: 10.1111/j.1365-294X.1995.tb00206.x PubMedCrossRefGoogle Scholar
  12. Economidis PS (1991) Check list of freshwater fishes of Greece. Recent status of threats and protection. Hellenic Society for the Protection of Nature, AthensGoogle Scholar
  13. Economidis PS, Banarescu PM (1991) The distribution and origins of freshwater fishes in the Balkan Peninsula, especially in Greece. Int Rev Gesamten Hydrobiol 76:257–283. doi: 10.1002/iroh.19910760209 CrossRefGoogle Scholar
  14. Economidis PS, Dimitriou E, Pagoni R, Michaloudi E, Natsis L (2000) Introduced and translocated fish species in the inland waters of Greece. Fish Manag Ecol 7:239–250. doi: 10.1046/j.1365-2400.2000.00197.x CrossRefGoogle Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  16. Ferguson A (1989) Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshw Biol 21:35–46. doi: 10.1111/j.1365-2427.1989.tb01346.x CrossRefGoogle Scholar
  17. Ferguson A, Taggart JB, Prodohl PA, McMeel O, Thompson C, Stone C, McGinnity P, Hynes RA (1995) The application of molecular markers to the study and conservation of fish population, with special reference to Salmo. J Fish Biol 47(suppl A):103–126. doi: 10.1111/j.1095-8649.1995.tb06048.x CrossRefGoogle Scholar
  18. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. doi: 10.2307/2412116 CrossRefGoogle Scholar
  19. Guo X, Liu S, Zhang C, Liu Y (2004) Comparative and evolutionary analysis of the cytochrome b sequences in cyprinids with different ploidy levels derived from crosses. Genetica 121:295–301. doi: 10.1023/B:GENE.0000039847.82917.c4 PubMedCrossRefGoogle Scholar
  20. Hickling C (1962) Fish culture. Faber and Faber, LondonGoogle Scholar
  21. Imsiridou A, Apostolidis PA, Durand DJ, Briolay J, Bouvet J, Triantaphyllidis C (1998) Genetic differentiation and phylogenetic relationships among Greek Chub Leuciscus cephalus L. (Pisces, Cyprinidae) populations as revealed by RFLP analysis of mitochondrial DNA. Biochem Syst Ecol 26:415–429. doi: 10.1016/S0305-1978(97)00123-3 CrossRefGoogle Scholar
  22. Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490PubMedGoogle Scholar
  23. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism. Academic Press, New York, pp 21–132Google Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 PubMedCrossRefGoogle Scholar
  25. Kirpichnikov VS (1981) Genetic bases of fish selection (Translated by G.G. Gause). Springer, Berlin, pp 1–410Google Scholar
  26. Klossa-Kilia E, Prassa M, Papasotiropoulos V, Alachiotis S, Kilias G (2002) Mitochondrial DNA diversity in Atherina boyeri populations as determined b RFLP analysis of three mtDNA segments. Heredity 89:363–370. doi: 10.1038/sj.hdy.6800144 PubMedCrossRefGoogle Scholar
  27. Kottelat M (1997) European freshwater fishes. Biologia 52(Suppl. 5):1–271Google Scholar
  28. Kumar S, Tamur K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150–163. doi: 10.1186/1471-2105-5-150 PubMedCrossRefGoogle Scholar
  29. Luo J, Zhang Y-P, Zhu C-L, Xiao W-H, Huang S-Y (1999) Genetic diversity in crucian carp (Carassius auratus). Biochem Genet 37:267–279. doi: 10.1023/A:1018751008848 PubMedCrossRefGoogle Scholar
  30. Mabuchi K, Senou H, Nishida M (2008) Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan. Mol Ecol 17:796–809PubMedGoogle Scholar
  31. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091. doi: 10.1073/pnas.90.9.4087 PubMedCrossRefGoogle Scholar
  32. McDowall RM (1972) The species problem in freshwater fishes and the taxonomy of diadromous and lacustrine populations of Galaxias maculatus. J R Soc N Z 2:325–367Google Scholar
  33. Murakami M, Matsuba C, Fujitani H (2001) The maternal origins of the triploid Ginbuna (Carassius auratus langsdorfi): phylogenetic relationships with the C. auratus taxa by partial mitochondrial D-loop sequencing. Genes Genet Syst 76:25–32. doi: 10.1266/ggs.76.25 PubMedCrossRefGoogle Scholar
  34. Paschos I, Apostolidis AP, Triantaphyllidis C (2001) Gametic products and allozyme variation of brown trout (Salmo trutta L.) in Louros river (NW Greece). Biologia 56:199–204Google Scholar
  35. Paschos I, Nathanailides C, Tsoumani M, Perdikaris C, Gouva E, Leonardos I (2004) Intra and inter-specific mating options for gynogenetic reproduction of Carassius gibelio (Bloch, 1783) in Lake Pamvotis (NW Greece). Belg J Zool 134:55–60Google Scholar
  36. Patterson C, Williams DM, Humphries CJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24:153–188. doi: 10.1146/annurev.es.24.110193.001101 CrossRefGoogle Scholar
  37. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–819. doi: 10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  38. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  39. Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichid fishes. Nature 358:578–581. doi: 10.1038/358578a0 PubMedCrossRefGoogle Scholar
  40. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0. Sinauer, SunderlandGoogle Scholar
  41. Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965. doi: 10.1111/j.1095-8649.1992.tb02641.x CrossRefGoogle Scholar
  42. Taylor EB, Dodson JJ (1994) A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus). Mol Ecol 3:235–248. doi: 10.1111/j.1365-294X.1994.tb00057.x PubMedCrossRefGoogle Scholar
  43. Taylor EB, Harvey S, Pollard S, Volpe J (1997) Postglacial genetic diffentiation of reproductive ecotypes of kokanee Oncorhynchus nerka in Okanagan lake, British Columbia. Mol Ecol 6:503–517. doi: 10.1046/j.1365-294X.1997.00213.x PubMedCrossRefGoogle Scholar
  44. Triantaphyllidis A, Abatsopoulos TJ, Economidis PS (1999) Genetic differentiation and phylogeneticrelationships among Greek Silurus gl. and Silurus ar. (Pisces Siluridae) populations, assessed by RFLP analysis of mitochondrial DNA segments. Heredity 82:503–509. doi: 10.1038/sj.hdy.6885140 CrossRefGoogle Scholar
  45. Waters JM, Burridge CP (1999) Extreme intraspecific mitochondrial DNA sequence divergence in Galaxias maculates (Osteichthys: Galaxiidae), one of the world’s most widespread freshwater fish. Mol Phyl Evol 11:1–12. doi: 10.1006/mpev.1998.0554 CrossRefGoogle Scholar
  46. Wheeler A (2000) Status of Crucian carp, Carassius carassius (L.), in UK. Fish Manag Ecol 7:315–322Google Scholar
  47. Zardoya R, Economidis PS, Doadrio I (1999) Phylogenetic relationships of Greek cyprinidae : Molecular evidence for at least two origins of the Greek Cyprinid fauna. Mol Phylogenet Evol 13:122–131. doi: 10.1006/mpev.1999.0630 PubMedCrossRefGoogle Scholar
  48. Zhou JF, Wu QJ, Ye YZ, Tong JG (2003) Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp. Genetica 119:93–97. doi: 10.1023/A:1024421001015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • George Tsipas
    • 1
    • 2
  • George Tsiamis
    • 1
  • Kosmas Vidalis
    • 2
  • Kostas Bourtzis
    • 1
    Email author
  1. 1.Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  2. 2.Laboratory of Ichthyology, Department of Aquaculture and FisheriesTechnological Educational Institution (T.E.I.) of MessolonghiMessolonghiGreece

Personalised recommendations