, Volume 136, Issue 1, pp 1–4 | Cite as

Analysis of genetic structure of the red shrimp Aristeus antennatus from the Western Mediterranean employing two mitochondrial regions

  • M. I. RoldánEmail author
  • S. Heras
  • R. Patellani
  • F. Maltagliati


In this paper we addressed the phylogeographical genetic structure of the economically important red shrimp, Aristeus antennatus (Crustacea, Aristeidae) in the Western Mediterranean. Partial mitochondrial regions of the cytochrome c oxidase subunit I (514 bp) and ribosomal 16S subunit (547 bp) were sequenced in 137 individuals collected at three localities: Catalan Sea, Ligurian Sea and the southern Tyrrhenian Sea. Values of haplotypic diversity were h = 0.552–0.724, whereas those for nucleotide diversity were π = 0.0012–0.0026. Among-sample genetic diversity was not significant and no geographical patterns in the distribution of haplotypes were apparent. Results of the present study are consistent with a past population expansion that occurred <2,000 years ago. Despite the current fishing pressure, genetic variability appears to be sufficiently high to keep A. antennatus populations stable over time. Dispersal-related life history traits may account for the shallow genetic structure. Our results are not in contrast with the hypothesis of sustainability of Western Mediterranean red shrimp fisheries predicted on the basis of previously obtained biological results.


Aristeusantennatus mtDNA COI 16S rDNA Genetic diversity Phylogeography Western Mediterranean 



Authors wish to thank M. Arculeo and M. Cortey for their help in collecting samples and F. Utter, M. Canino and two anonymous reviewers for critical comments on the manuscript. This research was supported by a grant to MIR by Ministerio de Educación y Ciencia, Spain (CTM2006-00785).


  1. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  2. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  3. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi: 10.1007/BF02101694 PubMedCrossRefGoogle Scholar
  4. Heras S, González Castro M, Roldán MI (2006) Mugil curema in Argentinean waters: combined morphological and molecular approach. Aquaculture 261:473–478. doi: 10.1016/j.aquaculture.2006.07.003 CrossRefGoogle Scholar
  5. Ketmaier V, Pirollo D, De Matthaeis E, Tiedemann R, Mura G (2008) Large-scale mitochondrial phylogeography in the halophilic fairy shrimp Phallocryptus spinosa (Milne-Edwards, 1840) (Branchiopoda:Anostraca). Aquat Sci 70:65–76. doi: 10.1007/s00027-007-7028-7 CrossRefGoogle Scholar
  6. Luttikhuizen PC, Campos J, van Bleijswijk J, Peijnenburg KTCA, van der Veer HW (2008) Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol Phylogenet Evol 46:1015–1030. doi: 10.1016/j.ympev.2007.11.011 PubMedCrossRefGoogle Scholar
  7. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR, Version 2.0, Department of Zoology and Kewalo Marine Laboratory, University of HawaiiGoogle Scholar
  8. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  9. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  10. Remerie T, Bourgois T, Peelaers D, Vierstraete A, Vanfleteren J, Vanreusel A (2006) Phylogeographic patterns of the mysid Mesopodopsis slabberi (Crustacea, Mysida) in western Europe: evidence for high molecular diversity and cryptic speciation. Mar Biol (Berl) 149:465–481. doi: 10.1007/s00227-005-0235-7 CrossRefGoogle Scholar
  11. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  12. Sardà F, Bas C, Roldán MI, Pla C, Lleonart J (1998) Enzymatic and morphometric analyses of the population structure of Aristeus antennatus (Risso 1816) in its Mediterranean distribution area. J Exp Mar Biol Ecol 221:131–146. doi: 10.1016/S0022-0981(97)00119-6 CrossRefGoogle Scholar
  13. Sardà F, D’Onghia G, Politou CY, Company JB, Maiorano P, Kapiris K (2004) Deep-sea distribution, biological and ecological aspects of Aristeus antennatus (Risso, 1816) in the western and central Mediterranean Sea. Sci Mar 68:117–127Google Scholar
  14. Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochodrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390. doi: 10.1111/j.1365-294X.2004.02165.x PubMedCrossRefGoogle Scholar
  15. Swofford D (2002) PAUP* Phylogenetic analyses using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. I. Roldán
    • 1
    Email author
  • S. Heras
    • 1
  • R. Patellani
    • 1
    • 2
  • F. Maltagliati
    • 2
  1. 1.Departament de BiologiaUniversitat de GironaGironaSpain
  2. 2.Dipartimento di BiologiaUniversità di PisaPisaItaly

Personalised recommendations