, Volume 136, Issue 2, pp 303–310 | Cite as

Challenges for effective marker-assisted selection in plants

  • Frédéric Hospital


The basic principle of Marker-Assisted Selection (MAS) is to exploit Linkage Disequilibrium (LD) between markers and QTLs. With strong enough LD, MAS should in theory be easier, faster, cheaper, or more efficient than classical (phenotypic) selection. I briefly review the major MAS methods, describing some ‘success stories’ where MAS was applied successfully in the context of plant breeding, and detailing other cases where efficiency was not as high as expected. I discuss the possible causes explaining the difference between theoretical expectations and practical observations. Finally, I review the principal challenges and issues that must be tackled to make marker-assisted selection in plants more effective in the future, namely: managing and controlling QTL stability to apply MAS to complex traits, and integrating MAS in traditional breeding practices to make it more economically attractive and applicable in developing countries.


Marker-Assisted Selection Plant breeding DNA markers Quantitative trait loci Linkage disequilibrium Gene effects Epistasis Genotype by environment interactions 



I warmly thank W. G. Hill and an anonymous reviewer for patience and self-abnegation in providing numerous helpful comments that greatly improved the quality of this manuscript.


  1. Ahmadi N, Albar L, Pressoir G, Pinel A, Fargette D, Ghesquiere A (2001) Genetic basis and mapping of the resistance to Rice yellow mottle virus III Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet 103(6–7):1084–1092. doi: 10.1007/s001220100642 Google Scholar
  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745. doi: 10.1126/science.1113373 PubMedCrossRefGoogle Scholar
  3. Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20(1):31–40. doi: 10.1007/s11032-006-9070-x CrossRefGoogle Scholar
  4. Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic-improvement - methodologies, mapping and costs. Theor Appl Genet 67(1):35–43. doi: 10.1007/BF00303919 CrossRefGoogle Scholar
  5. Benchimol LL, de Souza CL, de Souza AP (2005) Microsatellite-assisted backcross selection in maize. Genet Mol Biol 28(4):789–797. doi: 10.1590/S1415-47572005000500022 CrossRefGoogle Scholar
  6. Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41(1):1–4Google Scholar
  7. Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109(2):419–424. doi: 10.1007/s00122-004-1639-3 PubMedCrossRefGoogle Scholar
  8. Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090. doi: 10.2135/cropsci2006.11.0690 CrossRefGoogle Scholar
  9. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113(2):206–224PubMedCrossRefGoogle Scholar
  10. Boitard S, Abdallah J, de Rochambeau H, Cierco-Ayrolles C, Mangin B (2006) Linkage disequilibrium interval mapping of quantitative trait loci. BMC Genomics 7:54. doi: 10.1186/1471-2164-7-54 Google Scholar
  11. Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15(1):75–85. doi: 10.1007/s11032-004-2734-5 CrossRefGoogle Scholar
  12. Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959PubMedGoogle Scholar
  13. Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48(4):685–697. doi: 10.1139/g05-032 PubMedCrossRefGoogle Scholar
  14. Causse M, Chaib J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442PubMedCrossRefGoogle Scholar
  15. Cerenak A, Satovic Z, Javornik B (2006) Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome 49(5):485–494. doi: 10.1139/G06-007 Google Scholar
  16. Chaib J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112(5):934–944Google Scholar
  17. Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: Recovering QTL identical-by-descent status information from marker data. Genetics 168(3):1737–1749. doi: 10.1534/genetics.104.028993 PubMedCrossRefGoogle Scholar
  18. Crow JF (1993) Galton, Francis—count and measure and count. Genetics 135(1):1–4PubMedGoogle Scholar
  19. Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59. doi: 10.1146/annurev.genet.38.072902.092425 PubMedCrossRefGoogle Scholar
  20. Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize—evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346Google Scholar
  21. Eshed Y, Zamir D (1996) Less than additive epistatic interactions of QTL in tomato. Genetics 143:1807–1817PubMedGoogle Scholar
  22. Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9(2):196–202. doi: 10.1016/j.pbi.2006.01.010 PubMedCrossRefGoogle Scholar
  23. Finkers R, Finkers R, van Heusden AW,Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114(6):1071–1080Google Scholar
  24. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305(5691):1786–1789. doi: 10.1126/science.1101666 PubMedCrossRefGoogle Scholar
  25. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330PubMedCrossRefGoogle Scholar
  26. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245. doi: 10.1371/journal.pbio.0020245
  27. Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9(3):107–109. doi: 10.1016/j.tplants.2004.01.003 PubMedCrossRefGoogle Scholar
  28. Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847Google Scholar
  29. Herdt RW (2006) Biotechnology in agriculture. Annu Rev Environ Resour 31:265–295. doi: 10.1146/ CrossRefGoogle Scholar
  30. Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95(8):1181–1189CrossRefGoogle Scholar
  31. Hu XS (2007) A general framework for marker-assisted selection. Theor Popul Biol 71(4):524–542. doi: 10.1016/j.tpb.2007.02.001 PubMedCrossRefGoogle Scholar
  32. Hyten DL, Choi IY, Song QJ, Shoemaker RC, Nelson RL, Costa JM et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175(4):1937–1944. doi: 10.1534/genetics.106.069740 PubMedCrossRefGoogle Scholar
  33. Kuchel H, Ye GY, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol Breed 16(1):67–78. doi: 10.1007/s11032-005-4785-7 CrossRefGoogle Scholar
  34. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756PubMedGoogle Scholar
  35. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109(3):658–668. doi: 10.1007/s00122-004-1674-0 PubMedCrossRefGoogle Scholar
  36. LeDeaux JR, Graham GI, Stuber CW (2006) Stability of QTLs involved in heterosis in maize when mapped under several stress conditions. Maydica 51(1):151–167Google Scholar
  37. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedGoogle Scholar
  38. Moerkerke B, Goetghebeur E, De Riek J, Roldan-Ruiz I (2006) Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding. J R Stat Soc [Ser A] 169:61–79CrossRefGoogle Scholar
  39. Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148(3):1353–1365PubMedGoogle Scholar
  40. Moreau L, Monod H, Charcosset A, Gallais A (1999) Marker-assisted selection with spatial analysis of unreplicated field trials. Theor Appl Genet 98(2):234–242CrossRefGoogle Scholar
  41. Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40(2):329–337Google Scholar
  42. Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize. Theor Appl Genet 110(1):92–105. doi: 10.1007/s00122-004-1781-y PubMedCrossRefGoogle Scholar
  43. Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H et al (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29(1):15–44. doi: 10.1016/j.foodpol.2004.01.002 CrossRefGoogle Scholar
  44. Neimann-Sorenson A, Robertson A (1961) The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agric Scand 11:163–196CrossRefGoogle Scholar
  45. Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155(3):329–336. doi: 10.1007/s10681-006-9334-x CrossRefGoogle Scholar
  46. Park S, Yoon MK, Lee SS, Kim KT, Chun C, Park HG (2007) Development of uniform double-crossed varieties using near-isogenic lines produced by marker-assisted selection in radish (Raphanus sativus L.). HortScience 42(4):856–856Google Scholar
  47. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi: 10.1038/335721a0 PubMedCrossRefGoogle Scholar
  48. Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivumAegilops tauschii introgression lines. Theor Appl Genet 112(4):634–647. doi: 10.1007/s00122-005-0166-1 PubMedCrossRefGoogle Scholar
  49. Pray CE, Naseem A (2007) Supplying crop biotechnology to the poor: opportunities and constraints. J Dev Stud 43(1):192–217. doi: 10.1080/00220380601055676 CrossRefGoogle Scholar
  50. Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11(5):213–216. doi: 10.1016/j.tplants.2006.03.006 PubMedCrossRefGoogle Scholar
  51. Reece JD, Haribabu E (2007) Genes to feed the world: the weakest link? Food Policy 32(4):459–479. doi: 10.1016/j.foodpol.2006.10.003 CrossRefGoogle Scholar
  52. Rocha JL, Eisen EJ, Siewerdt F, Vleck LDV, Pomp D (2004) A large-sample QTL study in mice: III. Reproduction. Mamm Genome 15(11):878–886. doi: 10.1007/s00335-004-2364-6 Google Scholar
  53. Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168(1):513–523. doi: 10.1534/genetics.103.023358 PubMedCrossRefGoogle Scholar
  54. Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83Google Scholar
  55. Smith C (1967) Improvement in metric traits through specific genetic loci. Anim Prod 9:349–358Google Scholar
  56. Soller M (1978) Use of loci associated with quantitative effects in dairy-cattle improvement. Anim Prod 27:133–139Google Scholar
  57. Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33. doi: 10.1007/BF00303917 CrossRefGoogle Scholar
  58. Soller M, Plotkinhazan J (1977) Use marker alleles for introgression of linked quantitative alleles. Theor Appl Genet 51(3):133–137Google Scholar
  59. Spielman DJ (2007) Pro-poor agricultural biotechnology: can the international research system deliver the goods? Food Policy 32(2):189–204. doi: 10.1016/j.foodpol.2006.05.002 CrossRefGoogle Scholar
  60. Stuber CW (1982) Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci 22:737Google Scholar
  61. Stuber CW, Polacco M, Lynn M (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583Google Scholar
  62. Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114(7):1211–1228. doi: 10.1007/s00122-007-0512-6 PubMedCrossRefGoogle Scholar
  63. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066. doi: 10.1126/science.277.5329.1063 PubMedCrossRefGoogle Scholar
  64. Tanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato—applications in genetics and breeding. Theor Appl Genet 57(4):161–170. doi: 10.1007/BF00279708 CrossRefGoogle Scholar
  65. Tanksley SD, Medino-Filho DH, Rick CM (1981) The effect of isozyme selection on metric characters in an interspecific backcross of tomato: basis of an early screening procedure. Theor Appl Genet 60:291–296. doi: 10.1007/BF00263721 CrossRefGoogle Scholar
  66. Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6(2):191–198. doi: 10.1016/S1369-5266(03)00002-5 PubMedCrossRefGoogle Scholar
  67. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630. doi: 10.1016/j.tplants.2005.10.004 PubMedCrossRefGoogle Scholar
  68. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF et al (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112(7):1258–1270. doi: 10.1007/s00122-006-0227-0 PubMedCrossRefGoogle Scholar
  69. Wang JK, Chapman SC, Bormett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47(2):582–590Google Scholar
  70. Xu SZ (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801PubMedGoogle Scholar
  71. Ye G, Moody D, Emebiri L, van Ginkel M (2007) Designing an optimal marker-based pedigree selection strategy for parent building in barley in the presence of repulsion linkage, using computer simulation. Aust J Agric Res 58(3):243–251. doi: 10.1071/AR06177 CrossRefGoogle Scholar
  72. Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5(6):505–510. doi: 10.1023/A:1009684409326 CrossRefGoogle Scholar
  73. Zhang J, Li X, Jiang G, Xu Y, He Y (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125(6):600–605. doi: 10.1111/j.1439-0523.2006.01281.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.INRA, UMR1236 Génétique et Diversité AnimalesJouy-en-JosasFrance

Personalised recommendations