, Volume 136, Issue 2, pp 271–284 | Cite as

Patterns of quantitative genetic variation in multiple dimensions



A fundamental question for both evolutionary biologists and breeders is the extent to which genetic correlations limit the ability of populations to respond to selection. Here I view this topic from three perspectives. First, I propose several nondimensional statistics to quantify the genetic variation present in a suite of traits and to describe the extent to which correlations limit their selection response. A review of five data sets suggests that the total variation differs substantially between populations. In all cases analyzed, however, the “effective number of dimensions” is less than two: more than half of the total genetic variation is explained by a single combination of traits. Second, I consider how patterns of variation affect the average evolutionary response to selection in a random direction. When genetic variation lies in a small number of dimensions but there are a large number of traits under selection, then the average selection response will be reduced substantially from its potential maximum. Third, I discuss how a low genetic correlation between male fitness and female fitness limits the ability of populations to adapt. Data from two recent studies of natural populations suggest this correlation can diminish or even erase any genetic benefit to mate choice. Together these results suggest that adaptation (in natural populations) and genetic improvement (in domesticated populations) may often be as much constrained by patterns of genetic correlation as by the overall amount of genetic variation.


Constraint Evolvability Function-valued trait Genetic correlation Heritability Selection response 


  1. Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127:229–255PubMedGoogle Scholar
  2. Beldade P, Koops K, Brakefield PM (2002a) Developmental constraints versus flexibility in morphological evolution. Nature 416:844–847. doi:10.1038/416844a PubMedCrossRefGoogle Scholar
  3. Beldade P, Koops K, Brakefield PM (2002b) Modularity, individuality, and evo-devo in butterfly wings. Proc Natl Acad Sci USA 99:14262–14267. doi:10.1073/pnas.222236199 PubMedCrossRefGoogle Scholar
  4. Blows MW (2007) A tale of two matrices: multivariate approaches in evolutionary biology. J Evol Biol 20:1–8. doi:10.1111/j.1420-9101.2006.01164.x PubMedCrossRefGoogle Scholar
  5. Blows M, Walsh B (2008) Spherical cows grazing in Flatland: constraints to selection and adaptation. In: van der Werf J, Graser HU, Frankham R, Gondro C (eds) Adaptation and fitness in animal populations: evolutionary and breeding perspectives on genetic resource management. Springer-Verlag, New York (in press)Google Scholar
  6. Blows MW, Chenoweth SF, Hine E (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am Nat 163:329–340. doi:10.1086/381941 PubMedCrossRefGoogle Scholar
  7. Brakefield PM (2006) Evo-devo and constraints on selection. Trends Ecol Evol 21:362–368. doi:10.1016/j.tree.2006.05.001 PubMedCrossRefGoogle Scholar
  8. Brommer JE, Kirkpatrick M, Qvarnström A et al (2007) The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLoSONE 2:e744. doi:710.1371/journal.pone.0000744
  9. Brotherstone S, Goddard M (2005) Artificial selection and maintenance of genetic variance in the global dairy cow population. Philos Trans R Soc Lond B 360:1479–1488. doi: 10.1098/rstb.2005.1668 Google Scholar
  10. Burt A (1995) Perspective: the evolution of fitness. Evol Int J Org Evol 49:1–8. doi:10.2307/2410288 Google Scholar
  11. Calsbeek R, Sinervo B (2004) Within-clutch variation in offspring sex determined by differences in sire body size: cryptic mate choice in the wild. J Evol Biol 17:464–470. doi:10.1046/j.1420-9101.2003.00665.x PubMedCrossRefGoogle Scholar
  12. Charlesworth B (1990) Optimization models, quantitative genetics, and mutation. Evol Int J Org Evol 44:520–538. doi:10.2307/2409433 Google Scholar
  13. Chippindale AK, Gibson JR, Rice WR (2001) Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc Natl Acad Sci USA 98:1671–1675. doi:10.1073/pnas.041378098 PubMedCrossRefGoogle Scholar
  14. Delph LF, Gehring JL, Frey FM et al (2004) Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evol Int J Org Evol 58:1936–1946Google Scholar
  15. Dickerson GE (1955) Genetic slippage in response to selection for multiple objectives. Cold Spring Harb Symp Quant Biol 20:213–224PubMedGoogle Scholar
  16. Fedorka KM, Mousseau TA (2004) Female mating bias results in conflicting sex-specific offspring fitness. Nature 429:65–67. doi:10.1038/nature02492 PubMedCrossRefGoogle Scholar
  17. Fisher RA (1952) The genetical theory of natural selection, 2nd edn. Dover, New YorkGoogle Scholar
  18. Foerster K, Coulson T, Sheldon BC et al (2007) Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107–1109. doi:10.1038/nature05912 PubMedCrossRefGoogle Scholar
  19. Forsman A (1995) Opposing fitness consequences of colons pattern in male and female snakes. J Evol Biol 8:53–70. doi:10.1046/j.1420-9101.1995.8010053.x CrossRefGoogle Scholar
  20. Fowler K, Semple C, Barton NH et al (1997) Genetic variation for total fitness in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 264:191–199. doi:10.1098/rspb.1997.0027 CrossRefGoogle Scholar
  21. Griswold CK, Logsdon B, Gomulkiewicz R (2007) Neutral evolution of multiple quantitative characters: A genealogical approach. Genetics 176:455–466. doi:10.1534/genetics.106.069658 PubMedCrossRefGoogle Scholar
  22. Hansen TF, Pelabon C, Armbruster WS et al (2003) Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. J Evol Biol 16:754–766. doi:10.1046/j.1420-9101.2003.00556.x PubMedCrossRefGoogle Scholar
  23. Hansen TF, Alvarez-Castro JM, Carter AJR et al (2006) Evolution of genetic architecture under directional selection. Evol Int J Org Evol 60:1523–1536Google Scholar
  24. Hayes JF, Hill WG (1981) Modification of estimates of parameters in the construction of genetic selection indices (‘bending’). Biometrics 37:483–493. doi:10.2307/2530561 CrossRefGoogle Scholar
  25. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310Google Scholar
  26. Henderson CR (1982) Analysis of covariance in the mixed model. Higher-level, non-homogeneous and random regressions. Biometrics 38:623–640. doi:10.2307/2530044 PubMedCrossRefGoogle Scholar
  27. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph Press, Guelph, CanadaGoogle Scholar
  28. Hereford J, Hansen TF, Houle D (2004) Comparing strengths of directional selection: How strong is strong? Evol Int J Org Evol 58:2133–2143Google Scholar
  29. Hill WG, Thompson R (1978) Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 34:429–439. doi:10.2307/2530605 CrossRefGoogle Scholar
  30. Hine E, Blows MW (2006) Determining the effective dimensionality of the genetic variance-covariance matrix. Genetics 173:1135–1144. doi:10.1534/genetics.105.054627 PubMedCrossRefGoogle Scholar
  31. Hine E, Chenoweth SF, Blows MW (2004) Multivariate quantitative genetics and the lek paradox: genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evol Int J Org Evol 58:2754–2762Google Scholar
  32. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:194–204Google Scholar
  33. Houle D, Morikawa B, Lynch M (1996) Comparing mutational variabilities. Genetics 143:1467–1483PubMedGoogle Scholar
  34. Hunt J, Blows MW, Zajitschek F et al (2007) Reconciling strong stabilizing selection with the maintenance of genetic variation in a natural population of black field crickets (Teleogryllus commodus). Genetics 177:875–880. doi:10.1534/genetics.107.077057 PubMedCrossRefGoogle Scholar
  35. Jaffrezic F, Pletcher SD (2000) Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics 156:913–922PubMedGoogle Scholar
  36. Jaffrezic F, Thompson R, Pletcher SD (2004) Multivariate character process models for the analysis of two or more correlated function-valued traits. Genetics 168:477–487. doi:10.1534/genetics.103.019554 PubMedCrossRefGoogle Scholar
  37. Jennrich RI, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42:805–820. doi:10.2307/2530695 PubMedCrossRefGoogle Scholar
  38. Jones AG, Arnold SJ, Burger R (2004) Evolution and stability of the G-matrix on a landscape with a moving optimum. Evol Int J Org Evol 58:1639–1654Google Scholar
  39. Jones AG, Arnold SJ, Burger R (2007) The mutation matrix and the evolution of evolvability. Evol Int J Org Evol 61:727–745. doi:10.1111/j.1558-5646.2007.00071.x Google Scholar
  40. Kingsolver JG, Gomulkiewicz R, Carter PA (2001) Variation, selection and evolution of function-valued traits. Genetica 112:87–104. doi:10.1023/A:1013323318612 PubMedCrossRefGoogle Scholar
  41. Kirkpatrick M (1996) Genes and adaptation: a pocket guide to the theory. In: Rose MR, Lauder GV (eds) Adaptation. Academic Press, New York, pp 125–148Google Scholar
  42. Kirkpatrick M, Barton NH (1997) The strength of indirect selection on female mating preferences. Proc Natl Acad Sci USA 94:1282–1286. doi:10.1073/pnas.94.4.1282 PubMedCrossRefGoogle Scholar
  43. Kirkpatrick M, Hall DW (2004) Sexual selection and sex linkage. Evol Int J Org Evol 58:683–691Google Scholar
  44. Kirkpatrick M, Heckman N (1989) A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol 27:429–450. doi:10.1007/BF00290638 PubMedCrossRefGoogle Scholar
  45. Kirkpatrick M, Lofsvold D (1989) The evolution of growth trajectories and other complex quantitative characters. Genome 31:778–783PubMedGoogle Scholar
  46. Kirkpatrick M, Lofsvold D (1992) Measuring selection and constraint in the evolution of growth. Evol Int J Org Evol 46:954–971. doi:10.2307/2409749 Google Scholar
  47. Kirkpatrick M, Meyer K (2004) Direct estimation of genetic principal components: Simplified analysis of complex phenotypes. Genetics 168:2295–2306. doi:10.1534/genetics.104.029181 PubMedCrossRefGoogle Scholar
  48. Kirkpatrick M, Ryan MJ (1991) The evolution of mating preferences and the paradox of the lek. Nature 350:33–38. doi:10.1038/350033a0 CrossRefGoogle Scholar
  49. Kirkpatrick M, Hill WG, Thompson R (1994) Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. Genet Res 64:57–69PubMedCrossRefGoogle Scholar
  50. Kirkpatrick M, Johnson T, Barton N (2002) General models of multilocus evolution. Genetics 161:1727–1750PubMedGoogle Scholar
  51. Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B 359:873–890. doi:10.1098/rstb.2003.1437 CrossRefGoogle Scholar
  52. Kruuk LEB, Clutton-Brock TH, Slate J et al (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703. doi:10.1073/pnas.97.2.698 PubMedCrossRefGoogle Scholar
  53. Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evol Int J Org Evol 33:402–416. doi:10.2307/2407630 Google Scholar
  54. Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evol Int J Org Evol 34:292–305. doi:10.2307/2407393 Google Scholar
  55. Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New YorkGoogle Scholar
  56. Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94:347–355. doi:10.1038/sj.hdy.6800615 PubMedCrossRefGoogle Scholar
  57. Maynard Smith J, Burian R, Kauffman S et al (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287. doi:10.1086/414425 CrossRefGoogle Scholar
  58. McCleery RH, Pettifor RA, Armbruster P et al (2004) Components of variance underlying fitness in a natural population of the great tit Parus major. Am Nat 164:E62–E72. doi:10.1086/422660 PubMedCrossRefGoogle Scholar
  59. McGuigan K, Blows MW (2007) The phenotypic and genetic covariance structure of drosphilid wings. Evol Int J Org Evol 61:902–911. doi:10.1111/j.1558-5646.2007.00078.x Google Scholar
  60. McGuigan K, Chenoweth SF, Blows MW (2005) Phenotypic divergence along lines of genetic variance. Am Nat 165:32–43. doi:10.1086/426600 PubMedCrossRefGoogle Scholar
  61. Meagher TR (1992) The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). I. Genetic variation. Evol Int J Org Evol 46:445–457. doi:10.2307/2409863 Google Scholar
  62. Meyer K (1989) Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm. Genet Sel Evol 21:317–340. doi:10.1051/gse:19890308 CrossRefGoogle Scholar
  63. Meyer K (2005) Genetic principal components for live ultrasound scan traits of Angus cattle. Anim Sci 81:337–345. doi:10.1079/ASC50850337 CrossRefGoogle Scholar
  64. Meyer K (2006a) To have your steak and eat it: genetic principal component analysis for beef cattle data. 8th world congress on genetics applied to livestock production CDGoogle Scholar
  65. Meyer K (2006b) “WOMBAT”—digging deep for quantitative genetic analyses using restricted maximum likelihood. CD ROM eighth world congress of genetics applied to livestock production comm. 27-14Google Scholar
  66. Meyer K (2007) Multivariate analyses of carcass traits for Angus cattle fitting reduced rank and factor analytic models. J Anim Breed Genet 124:50–64. doi:10.1111/j.1439-0388.2007.00637.x PubMedCrossRefGoogle Scholar
  67. Meyer K, Hill WG (1997) Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood. Livest Prod Sci 47:185–200. doi:10.1016/S0301-6226(96)01414-5 CrossRefGoogle Scholar
  68. Meyer K, Kirkpatrick M (2005a) Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genet Sel Evol 37:1–30. doi:10.1051/gse:2004034 PubMedCrossRefGoogle Scholar
  69. Meyer K, Kirkpatrick M (2005b) Up hill, down dale: quantitative genetics of curvaceous traits. Philos Trans R Soc Lond B 360:1443–1455. doi:10.1098/rstb.2005.1681 CrossRefGoogle Scholar
  70. Meyer K, Kirkpatrick M (2007) A note on bias in reduced rank estimates of covariance matrices. Proc Assoc Adv Anim Breed Genet 17:154–157Google Scholar
  71. Mezey JG, Houle D (2005) The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evol Int J Org Evol 59:1027–1038Google Scholar
  72. Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci 9:358–364. doi:10.1016/j.tplants.2004.05.005 PubMedCrossRefGoogle Scholar
  73. Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197. doi:10.1038/hdy.1987.113 PubMedCrossRefGoogle Scholar
  74. Pander BL, Thompson R, Hill WG (1993) Phenotypic correlations among daily records of milk yields. Indian J Anim Sci 63:1282–1286Google Scholar
  75. Pettay JE, Kruuk LEB, Jokela J et al (2005) Heritability and genetic constraints of life-history trait evolution in preindustrial humans. Proc Natl Acad Sci USA 102:2838–2843. doi:10.1073/pnas.0406709102 PubMedCrossRefGoogle Scholar
  76. Phillips PC, Arnold SJ (1999) Hierarchical comparison of genetic variance-covariance matrices. I. Using the flury hierarchy. Evol Int J Org Evol 53:1506–1515. doi:10.2307/2640896 Google Scholar
  77. Pischedda A, Chippindale AK (2006) Intralocus sexual conflict diminishes the benefits of sexual selection. PLoS Biol 4:2099–2103. doi:10.1371/journal.pbio.0040356 CrossRefGoogle Scholar
  78. Pletcher SD, Geyer CJ (1999) The genetic analysis of age-dependent traits: Modeling the character process. Genetics 153:825–835PubMedGoogle Scholar
  79. Powell RL, Norman HD (2006) Major advances in genetic evaluation techniques. J Dairy Sci 89:1337–1348PubMedCrossRefGoogle Scholar
  80. Prasad NG, Bedhomme S, Day T et al (2007) An evolutionary cost of separate genders revealed by male-limited evolution. Am Nat 169:29–37. doi:10.1086/509941 PubMedCrossRefGoogle Scholar
  81. Price T, Schluter D (1991) On the low heritability of life history traits. Evol Int J Org Evol 45:853–861. doi:10.2307/2409693 Google Scholar
  82. Qvarnstrom A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441:84–86. doi:10.1038/nature04564 PubMedCrossRefGoogle Scholar
  83. Riska B, Atchley WR, Rutledge JJ (1984) A genetic analysis of targeted growth in mice. Genetics 107:79–101PubMedGoogle Scholar
  84. Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New YorkGoogle Scholar
  85. Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447. doi:10.1111/j.1420-9101.2006.01255.x PubMedCrossRefGoogle Scholar
  86. Schaeffer LR (2004) Application of random regression models in animal breeding. Livest Prod Sci 86:35–45. doi:10.1016/S0301-6226(03)00151-9 CrossRefGoogle Scholar
  87. Schlosser G, Wagner GP (eds) (2004) Modularity in development and evolution. University of Chicago Press, ChicagoGoogle Scholar
  88. Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evol Int J Org Evol 50:1766–1774. doi:10.2307/2410734 Google Scholar
  89. Shaw RG (1987) Maximum likelihood approaches applied to quantitative genetics of natural populations. Evol Int J Org Evol 41:812–826. doi:10.2307/2408890 Google Scholar
  90. Thompson R (1973) The estimation of variance and covariance components with an application when records are subject to culling. Biometrics 29:527–550. doi:10.2307/2529174 CrossRefGoogle Scholar
  91. Weber KE (1990) Selection on wing allometry in Drosophila melanogaster. Genetics 126:975–989PubMedGoogle Scholar
  92. Wolfram S (2003) The mathematica book. Wolfram Media, Champaign, IllinoisGoogle Scholar
  93. Zhang XS, Wang JL, Hill WG (2002) Pleiotropic model of the maintenance of quantitative genetic variation at mutation-selection balance. Genetics 161:419–433PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Section of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations