, Volume 136, Issue 1, pp 13–25 | Cite as

Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato

  • Mariano I. Giombini
  • Nicolás Frankel
  • Norberto D. Iusem
  • Esteban Hasson


The Asr gene family (named after abscicic acid [ABA], stress, ripening), exclusively present in plant genomes, is involved in transcriptional regulation. Its members are up-regulated in roots and leaves of water- or salt-stressed plants. In previous work, evidence of adaptive evolution (as inferred from synonymous and nonsynonymous divergence rates) has been reported for Asr2 in Solanum chilense and S. arcanum, two species dwelling in habitats with different precipitation regimes. In this paper we investigate patterns of intraspecific nucleotide variation in Asr2 and the unlinked locus CT114 in S. chilense and S. arcanum. The extent of nucleotide diversity in Asr2 differed between species in more than one order of magnitude. In both species we detected evidence of non-neutral evolution, which may be ascribed to different selective regimes, potentially associated to unique climatic features, or, alternatively, to demographic events. The results are discussed in the light of demographic and selective hypotheses.


Polymorphism Asr genes Solanum Drought Selection 



We thank the Tomato Genetics Resource Center (University of California, Davis, USA) for providing the seeds of the tomato wild populations and Gustavo Gudesblat for his valuable help with the experimental work in the laboratory. We also wish to thank Romina Piccinali and David Ardell for their help with technical issues of software usage, and two anonymous reviewers for their constructive comments and criticisms on a previous version of this manuscript. This work was supported by grants from Universidad de Buenos Aires (UBA), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina. M.G. held a fellowship from UBA. N.F. held a fellowship from CONICET. N.D.I. and E.H. are members of the Carrera del Investigador Científico, CONICET, Argentina.


  1. Aguadé M (2001) Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. Mol Biol Evol 18:1–9PubMedGoogle Scholar
  2. Ardell DH (2004) SCANMS: adjusting for multiple comparisons in sliding window neutrality tests. Bioinformatics 20:1986–1988. doi: 10.1093/bioinformatics/bth187 PubMedCrossRefGoogle Scholar
  3. Arunyawat U, Stephan W, Städler T (2007) Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes. Mol Biol Evol 24:2310–2322. doi: 10.1093/molbev/msm162 PubMedCrossRefGoogle Scholar
  4. Baudry E, Depaulis F (2003) Effect of misoriented sites on neutrality tests with outgroup. Genetics 165:1619–1622PubMedGoogle Scholar
  5. Bermudez-Moretti M, Maskin L, Gudesblat G, Correa-García S, Iusem ND (2006) Asr1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiol Plant 127:111–118. doi: 10.1111/j.1399-3054.2006.00664.x CrossRefGoogle Scholar
  6. Bradley RD, Hillis DM (1997) Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol 14:592–593PubMedGoogle Scholar
  7. Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180. doi: 10.1105/tpc.013854 PubMedCrossRefGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x PubMedCrossRefGoogle Scholar
  9. Crandall KA, Templeton AR (1999) Statistical methods for detecting recombination. In: Crandall KA (ed) The evolution of HIV. The Johns Hopkins University Press, pp 153–176Google Scholar
  10. Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413PubMedGoogle Scholar
  11. Filatov DA, Charlesworth D (1999) DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 153:1423–1434PubMedGoogle Scholar
  12. Frankel N, Hasson E, Iusem ND, Rossi MS (2003) Adaptive evolution of water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats. Mol Biol Evol 20:1955–1962. doi: 10.1093/molbev/msg214 PubMedCrossRefGoogle Scholar
  13. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  14. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  15. Ganal MW, Czihal R, Hannappel U, Kloos DU, Polley A, Ling HQ (1998) Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res 8:842–847PubMedGoogle Scholar
  16. Hanfstingl U, Berry A, Kellogg EA, Costa JT, Rudiger W, Ausubel FM (1994) Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: roles for both balancing and directional selection? Genetics 138:811–828PubMedGoogle Scholar
  17. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438. doi: 10.1016/S1360-1385(01)02052-0 PubMedCrossRefGoogle Scholar
  18. Hudson RR (1990) Gene genealogies and the coalescent process. Oxf Surv Evol Biol 7:1–44Google Scholar
  19. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338. doi: 10.1093/bioinformatics/18.2.337 PubMedCrossRefGoogle Scholar
  20. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedGoogle Scholar
  21. Hudson RR, Boos D, Kaplan NL (1992) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151PubMedGoogle Scholar
  22. Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato transcript induced in water stress and ripening. Plant Physiol 102:1353–1354. doi: 10.1104/pp. 102.4.1353 PubMedCrossRefGoogle Scholar
  23. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A et al (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84:1127–1135. doi: 10.1016/S0300-9084(02)00024-X PubMedCrossRefGoogle Scholar
  24. Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004a) The water- and salt-stress regulated Asr1 gene encodes a zinc-dependent DNA-binding protein. Biochem J 381:373–378. doi: 10.1042/BJ20031800 PubMedCrossRefGoogle Scholar
  25. Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004b) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27:1459–1468. doi: 10.1111/j.1365-3040.2004.01251.x CrossRefGoogle Scholar
  26. Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1834. doi: 10.1534/genetics.106.067728 PubMedCrossRefGoogle Scholar
  27. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  28. Maskin L, Gudesblat GE, Moreno JE, Carrari FO, Frankel N, Sambade A et al (2001) Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci 161:739–746. doi: 10.1016/S0168-9452(01)00464-2 CrossRefGoogle Scholar
  29. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35CrossRefGoogle Scholar
  30. Mustonen V, Lässig M (2007) Adaptations to fluctuating selection in Drosophila. Proc Natl Acad Sci USA 104:2277–2282. doi: 10.1073/pnas.0607105104 PubMedCrossRefGoogle Scholar
  31. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes. Am J Bot 88:1888–1902. doi: 10.2307/3558365 CrossRefGoogle Scholar
  32. Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956. doi: 10.1093/jxb/erm056 PubMedCrossRefGoogle Scholar
  33. Qiu YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4:26–30. doi: 10.1016/S1360-1385(98)01361-2 PubMedCrossRefGoogle Scholar
  34. Roselius K, Stephan W, Städler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763. doi: 10.1534/genetics.105.043877 PubMedCrossRefGoogle Scholar
  35. Rossi MM, Iusem ND (1994) Tomato genomic clone homologous to a gene encoding an ABA-induced protein. Plant Physiol 104:1073–1074. doi: 10.1104/pp. 104.3.1073 PubMedCrossRefGoogle Scholar
  36. Rossi MM, Lijavetzky D, Bernacchi D, Hopp HE, Iusem ND (1996) Asr genes belong to a tomato gene family of at least three closely linked loci located to chromosome 4. Mol Gen Genet 252:489–492PubMedGoogle Scholar
  37. Rozas J, Sánchez-Del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi: 10.1093/bioinformatics/btg359 PubMedCrossRefGoogle Scholar
  38. Städler T, Roselius K, Stephan W (2005) Genealogical footprints of speciation processes in wild tomatoes: demography and evidence for historical gene flow. Evol Int J Org Evol 59:1268–1279Google Scholar
  39. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis. Genetics 123:585–595PubMedGoogle Scholar
  40. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  41. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812. doi: 10.1007/s00114-007-0254-y PubMedCrossRefGoogle Scholar
  42. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedCrossRefGoogle Scholar
  43. Wall JD, Andolfatto P, Przeworski M (2002) Testing models of selection and demography in Drosophila simulans. Genetics 162:203–216PubMedGoogle Scholar
  44. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:188–193CrossRefGoogle Scholar
  45. Yang CY, Chen YC, Jauh GY, Wang CS (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–846PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mariano I. Giombini
    • 1
  • Nicolás Frankel
    • 1
  • Norberto D. Iusem
    • 1
  • Esteban Hasson
    • 2
  1. 1.Departamento de Fisiología, Biología Molecular y Celular and IFIByNE-CONICETFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Departamento de Ecología, Genética y EvoluciónFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations