, Volume 135, Issue 2, pp 245–255 | Cite as

Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis

  • Olga V. Muravenko
  • Olga Yu. Yurkevich
  • Nadezhda L. Bolsheva
  • Tatiana E. Samatadze
  • Inna V. Nosova
  • Daria A. Zelenina
  • Alexander A. Volkov
  • Konstantin V. Popov
  • Alexander V. Zelenin


Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor.


Ag-NOR-staining C/DAPI-banding FISH 5S and 26S rDNA Evolution Linum Chromosome identification RAPD-analysis Taxonomy 



This research was supported by the grants from Russian State Foundation for Basic Research (05-08-33607, 06-04-81007, 08-08-00391 and 07-04-00268).


  1. Badaeva ED, Friebe B, Zoshchuk SA et al (1998) Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Res 6(8):629–637PubMedCrossRefGoogle Scholar
  2. Chennaveeraiah MS, Joshi KK (1983) Karyotypes in cultivated and wild species of Linum. Cytologia 48:833–841Google Scholar
  3. Chernomorskaya NM, Stankevich AK (1987) To the problem of intraspecific classification of flax Linum usitatissimum L. Sbornik nauchnykh trudov poprikladnoi botanike, genetike, selektsii [Collection of works on applied botany, genetics, and breeding], vol 113. Leningrad VIR Publications, p 61Google Scholar
  4. Cullis CA, Swami S, Song Y (1999) RAPD polymorphisms detected among the flax genotrophs. Plant Mol Biol 41:795–800PubMedCrossRefGoogle Scholar
  5. Dagne K, Cheng B, Heneen WK (2000) Number and sites of rDNA loci of Guizotia abyssinica (L.f.) Cass. as determined by fluorescence in situ hybridization. Hereditas 132:63–65PubMedCrossRefGoogle Scholar
  6. Diederichsen A, Hammer K (1995) Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.). Genet Resour Crop Evol 42:263–272CrossRefGoogle Scholar
  7. Dubey DK, Kumar S (1973) Cross-relationship between two Linum species bearing different basic chromosome numbers. Indian J Agric Sci 43(1):18–20Google Scholar
  8. Egorova TV (1996) Genus LinumLinaceae DC. ex S.F.Gray. In: Tsvelev NN (ed) Flora Vostochnoi Evropy (East European Flora), vol 9. St Petersburg Publishing House “Mir i Semia”, pp 347–360Google Scholar
  9. Fu YB, Peterson G, Diederichsen A et al (2002) RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol 49:253–259CrossRefGoogle Scholar
  10. Gill KS, Yermanos DM (1967) Cytogenetic studies on the genus Linum I. Hybrids among taxa with 15 as the haploid chromosome number. Crop Sci 7:623–627Google Scholar
  11. Hajdera D, Siwinska R, Hasterok J et al (2003) Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor Appl Genet 107:988–996PubMedCrossRefGoogle Scholar
  12. Harris BD (1968) Chromosome numbers and evolution in North American species of Linum. Am J Bot 55(10):1197–1204CrossRefGoogle Scholar
  13. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  14. Koo DH, Hur Y, Jin DC et al (2002) Karyotype analysis of a korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13(3):413–418PubMedGoogle Scholar
  15. Kutuzova SN, Gavrilyuk IP, Uggi EE (1999) Prospects of using protein markers to refine taxonomy and evolution of the genus Linum. Tr Bot Genet Selekts 156:29–39Google Scholar
  16. Lay CL, Dybing CD (1989) Linseed. In: Robbelen G (ed) Oil crops of the world. McGraw-Hill, New York, pp 416–430Google Scholar
  17. Lemesh VA, Malyshev SV, Khotyleva LV (1999) Use of molecular markers in studying the genetic diversity in flax. Dokl Nats Akad Nauk Belarusi 43(3):70–72Google Scholar
  18. Lemesh VA, Malyshev SV, Grushetskaya ZE et al (2001) Use of RAPD analysis to establish the taxonomic status of wild relatives of cultivated flax. Dokl Akad Nauk Belarusi 45(3):88–90Google Scholar
  19. Lewis WH (1964) A hexaploid Linum (Lineceaceae) from eastern Ethiopia. SIDA 1:383–384Google Scholar
  20. Mansby EO, von Bothmer Diaz R (2000) Preliminary study of genetic diversity in Swedish flax (L. usitatissimum). Genet Resour Crop Evol 47:417–424CrossRefGoogle Scholar
  21. Moroz OM, Tsymbalyuk ZM (2005) Palinomorphologycal characterization of sections Adenolinum, Dasylinum, Linopsis of genus Linum L. in the Flora of Ukraine. Ukr Bot J 62(5):666–677Google Scholar
  22. Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18 S-26 S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100:71–78CrossRefGoogle Scholar
  23. Mukai RY, Kawaguchi K, Goel S et al (2001) Physical mapping of 18S–5.8S–26S and 5S ribosomal RNAgene families in three important vetches (Viciaspecies) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845CrossRefGoogle Scholar
  24. Muravenko OV, Amosova AV, Samatadze TE et al (2003) 9-Aminoacridine: an efficient reagent to improve human and plant chromosome banding patterns and to standardize chromosome image analysis. Cytometry 51(1):52–57PubMedCrossRefGoogle Scholar
  25. Ockendon DJ, Walters SM (1968) Linaceae. In: Tutin TG et al (ed) Flora Europaea. Rosacea to Umbelliferaceae, vol 2. Cambridge University Press, pp 206–211Google Scholar
  26. Oh TJ, Gorman M, Cullis CA (2000) RFLP and RAPD mapping in flax (Linum usitatissimum). Theor Appl Genet 101:590–593CrossRefGoogle Scholar
  27. Olin-Fatih M, Heneen WK (1992) C-banded karyotypes of Brassica campestris, B. oleraceae, and B. napus. Genome 35:583–589Google Scholar
  28. Optasyuk OM (2006) Characterization of ultrastructure of the leaf surface in species of the genus Linum L. in the Ukrainian Flora. Ukr Bot J 63(6):805–815Google Scholar
  29. Pierozzi NI, Galgaro ML, Lopes CL (2001) Application of C-banding in two Arachis wild species, Arachis pintoi Krapov. and A. villosulicarpa Hoehne to mitotic chromosome analyses. Caryologia 54(4):377–384Google Scholar
  30. Popov KV, Muravenko OV, Samatadze TE et al (2001) Peculiarities of studying the heterochromatic regions of small plant chromosomes. Dokl Akad Nauk 381(4):562–565Google Scholar
  31. Ray C (1944) Cytological studies on the flax genus (Linum). Am J Bot 31:241–248CrossRefGoogle Scholar
  32. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76CrossRefGoogle Scholar
  33. Samatadze TE, Muravenko OV, Popov KV et al (2001) Genome comparison of the Matricaria chamomilla L. varieties by the chromosome C- and OR-banding patterns. Caryologia 54:299–306Google Scholar
  34. Schneeberger RG, Creissen GP, Cullis CA (1989) Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissimum L. Gene 83:75–84PubMedCrossRefGoogle Scholar
  35. Scweizer D (1980) Fluorescent chromosome banding in plants; applications, mechanisms, and implications for chromosome structure. In: Davids DR, Hopwood DA (eds) The plant genome. The John Innes Institute, Norwich, pp 61–71Google Scholar
  36. Seetharam A (1972) Interspecific hybridization in Linum. Euphytica 21:489–495CrossRefGoogle Scholar
  37. Svetlova AA, Yakovleva OV (2006) Comparative anatomy of seed coat of some species from the genus Linum (Linaceae). Russ Bot J 91(12):112–133Google Scholar
  38. Vanzela AL, Ruas CF, Oliveira MF et al (2002) Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetica 114:105–111PubMedCrossRefGoogle Scholar
  39. Vavilov NI (1926) The centers of origin of crop plants (Centry proishozhdeniya kyltyrnyh rastenij). Tr Bot Genet Selekts 16(2):42–54Google Scholar
  40. Velasco L, Goffman FD (2000) Tocopherol, plastochromanol and fatty acid patterns in the genus Linum. Plant Syst Evol 221:77–88CrossRefGoogle Scholar
  41. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods and application, 2nd edn. Taylor and Francis Group, Boca Raton, USAGoogle Scholar
  42. Xu J, Earle ED (1996) High resolution physical mapping of 45S (58.S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma 104(8):545–550PubMedCrossRefGoogle Scholar
  43. Yuzepchuk SV (1949) Genus LinumLinaceae Dumort. In: Shishkin BK (ed) Flora SSSR (Flora of the Soviet Union), vol 14. Leningrad, Moscow, pp 84–146Google Scholar
  44. Zelenina DA, Khrustaleva AM, Volkov AA (2006) Comparative study of the population structure and population assignment of sockeye salmon Oncorhynchus nerka from West Kamchatka based on RAPD–PCR and microsatellite polymorphism. Russ J Genet 42(5):563–572CrossRefGoogle Scholar
  45. Zohary D, Hopf M (1988) Domestication of plants in the old word. Oxford Science Publications, Clarendon Press, OxfordGoogle Scholar
  46. Zoldos V, Papes D, Cerbah M et al (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Olga V. Muravenko
    • 1
  • Olga Yu. Yurkevich
    • 1
  • Nadezhda L. Bolsheva
    • 1
  • Tatiana E. Samatadze
    • 1
  • Inna V. Nosova
    • 1
  • Daria A. Zelenina
    • 2
  • Alexander A. Volkov
    • 2
  • Konstantin V. Popov
    • 1
  • Alexander V. Zelenin
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Russian Federal Institute for Fisheries and OceanographyMoscowRussia

Personalised recommendations