, Volume 135, Issue 2, pp 137–148 | Cite as

Somatic breakpoints, distribution of repetitive DNA and non-LTR retrotransposon insertion sites in the chromosomes of Chironomus piger Strenzke (Diptera, Chironomidae)

  • Paraskeva Michailova
  • Julia Ilkova
  • Tom Hankeln
  • Erwin R. Schmidt
  • Anna Selvaggi
  • Giampaolo Zampicinini
  • Gabriella SellaEmail author


Structural aberrations, their frequency and distribution as well as distribution of the tandem repetitive minisatellite DNA clusters of Alu and Hinf elements and two retroelements, the LINE NLRCth1 and the SINE CTRT1, were analyzed in the genome of the chironomid C. piger Strenzke larvae from a Bulgarian population. A consistent somatic variability in the structure of the polytene chromosomes was detected, showing that the C. piger genome is more actively rearranging than supposed before. Breakpoints were concentrated in proximal parts of chromosomes significantly more often than in distal parts. By FISH analysis we could detect only one locus containing Alu elements and 38 Hinf cluster loci which appear to be dispersed equally all over the chromosomes. The retrotransposons NLRCth1 and CTRT1 are present only in a few loci, but highly variant among different individuals. The mean number of NLRCth1 sites per individual was 18.4 ± 2.09 and of CTRT1 was 54.8 ± 8.42. A third of breakpoint locations were close to or coincide with a locus occupied by a retroelement (either NLRCth1 or CTRT1). Nineteen percent of breakpoints coincided with Hinf repetitive DNA elements. Some breakpoints were identical in the two sibling species C. piger and C. riparius Meigen (syn.: C. thummi thummi) and are considered as conserved hot spots of chromosome breakage.


Chironomus Chromosomal aberrations Chromosomal breakages LINE Non-LTR retrotransposons Polytene chromosomes Minisatellite DNA SINE Tandem-repetitive DNA 



Balbiani ring


Bovine serum albumin


Deoxy nucleotide triphosphate


Deoxy uridine triphosphate


Fluorescence in situ hybridization


Long interspersed elements


Nucleolar organizer


Open reading frame


Polymerase chain reaction


Short interspersed elements


Transposable element


Transposon insertion display



This research was supported by a grant (FIRB) to Prof. G. Sella from the Italian Ministry of Education (MIUR), by a grant to Prof. P. Michailova from the Bulgarian Ministry of Education and Science (B1601) and a Collaborative Linkage NATO grant (LST CLG 980454) to Prof. G. Sella. The authors are indebted to Prof. C. Biémont for his valuable discussion of a former version of this paper and to two anonymous referees, whose criticisms greatly improved the manuscript.


  1. Belyaeva ES, Zhimulev IF, Volkova EI, Aleskeyenko AA, Moshkin YM, Koryakov DE (1998) Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc Natl Acad Sci USA 95:7532–7537PubMedCrossRefGoogle Scholar
  2. Blinov A, Sobanov YV, Gaidamakova E, Bogachev S, Kolesnikov N, Filippova M, Kiknadze II (1991) MEC: a transposable element from Chironomus thummi. Mol Gen Genet 229:152–154PubMedCrossRefGoogle Scholar
  3. Blinov A, Sobanov YV, Bogachev SS, Filippova M, Donchenko A (1993) Chironomus thummi genome contains a non-LTR retrotransposon. Mol Gen Genet 237:412–420PubMedGoogle Scholar
  4. Bovero S, Hankeln T, Michailova P, Schmidt E, Sella G (2002) Nonrandom chromosomal distribution of spontaneous breakpoints and satellite DNA clusters in two geographically distant populations of Chironomus riparius (Diptera, Chironomidae). Genetica 115:273–281PubMedCrossRefGoogle Scholar
  5. Casals F, Caceres M, Manfrin MH, Gonzalez J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169:2047–2059PubMedCrossRefGoogle Scholar
  6. Hägele K (1975) Chironomus. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 269–278Google Scholar
  7. Hankeln T (1990) Molekulare analyse phylogenetisch bedeutsamer repetitiver DNA bei Chironomiden. PhD Thesis, Ruhr University, BochumGoogle Scholar
  8. Hankeln T, Schmidt ER (1990) A new foldback transposable element TFB1 found in histone gemes of the midge Chironomus riparius. J Mol Biol 215:477–482PubMedCrossRefGoogle Scholar
  9. Hankeln T, Keyl H, Ross R, Schmidt ER (1993) Evolution of histone gene loci in chironomid midges. Genome 36:852–862PubMedCrossRefGoogle Scholar
  10. Hankeln T, Rohwedder A, Weich B, Schmidt ER (1994) Transposition of minisatellite sequences during evolution of Chironomid midges. Genome 37:542–549PubMedCrossRefGoogle Scholar
  11. Ilkova J, Hankeln T, Schmidt ER, Michailova P, Petrova N, Sella G, White K (2007) Genome instability of Chironomus riparius Mg. and Chironmus piger Str. (Diptera, Chironomidae). Caryologia 60(4):299–308Google Scholar
  12. Keyl H (1962) Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenische Beziehungen der Arten. Chromosoma 13:496–541Google Scholar
  13. Keyl H (1965) A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia 21:191–193PubMedCrossRefGoogle Scholar
  14. Kiknadze II, Shilova A, Kerkis I, Shobanov N, Zelenzov N, Grebenjuk F, Istomina A, Praslov B (1991) Karyotype and morphology of larvae in Chironomini. Atlas. Novosibirsk, 117 ppGoogle Scholar
  15. Kolesnikov NN, Bogachev SS, Scherbic SV, Taranin AV, Baiborodin ST, Donchenko AP, Sebeleva TE, Kiknadze II (1990) Structural elements of Balbiani ring BRa of Chironomus thummi. In: Harris J, Zbarsky I (eds) Nuclear structure and function. Plenum Press, New York, pp 53–56Google Scholar
  16. Korswagen H, Durbin R, Smits M, Plaster KR (1996) Transposon Tc1-derived, sequence tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci USA 93:1468–14685CrossRefGoogle Scholar
  17. Ladeveze V, Aulard S, Chaminade N, Periquet G, Lemeunier F (1998) Hobo transposons causing chromosomal breakpoints. Proc Biol Sci 265:1157–1159PubMedCrossRefGoogle Scholar
  18. Lyttle TW, Haymer D (1992) The role of the transposable element hobo in the origin of endemic inversion in wild populations of Drosophila melanogaster. Genetica 86:113–126PubMedCrossRefGoogle Scholar
  19. Mathiopolous KD, Torre A, Predazzi V, Petracea V, Coluzzi M (1998) Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci USA 95:12444–12449CrossRefGoogle Scholar
  20. Michailova P (1987) “C” banding in polytene chromosomes of species of a group “plumosus” (Diptera, Chironomidae). Genetica 74:41–51CrossRefGoogle Scholar
  21. Michailova P (1989) The polytene chromosomes and their significance to the systematics of the family Chironomidae, Diptera. Acta Zool Fenn 186:1–107Google Scholar
  22. Michailova P, Petrova N, Ramella L, Sella G, Todorova J, Zelano V (1996) Cytogenetic characteristics of a population of Chironomus riparius Meigen 1804 (Diptera, Chironomidae) from a polluted Po river station. Genetica 98:161–178CrossRefGoogle Scholar
  23. Michailova P, Ramella L, Sella G, Bovero S (1997) C band variation in polytene chromosomes of Chironomus riparius (Diptera, Chironomidae) from a polluted Piedmont station (Italy). Cytobios 90:139–151PubMedGoogle Scholar
  24. Michailova P, Petrova N, Sella G, Ramella L, Bovero S (1998) Structural-functional rearrangements in chromosome G in Chironomus riparius Meigen (Diptera, Chironomidae) collected from a heavy metal polluted area near Turin, Italy. Environ Pollut 103:27–135CrossRefGoogle Scholar
  25. Michailova P, Ilkova J, Petrova N, White K (2001) Rearrangements in the salivary gland chromosomes of Chironomus riparius Mg. (Diptera, Chironomidae) following exposure to lead. Caryologia 54:349–363Google Scholar
  26. Morrish TA, Gilbert N, Myers J, Vincent B, Stamato TD, Taccioli G, Batzer M, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165PubMedCrossRefGoogle Scholar
  27. Papusheva E, Gruhl MC, Berezikov E, Groudieva T, Scherbik SV, Martin J, Blinov A, Bergtrom G (2004) The evolution of SINEs and LINEs in the genus Chironomus (Diptera). J Mol Evol 58:269–279PubMedCrossRefGoogle Scholar
  28. Polukonova R, Beljanina S, Durova N (1996) Differential diagnosis of Ch. piger Strenzke and C. riparius Meigen. In: Shobanov N, Zinchenko T (eds) Ecology, evolution and systematics of Chironomids, RAS, Tolijti, pp 109–115Google Scholar
  29. Regner LP, Pereira MS, Alonso CE, Abdelhay EV, Valente L (1996) Genomic distribution of P elements in Drosophila willistoni and a search for their relationship with chromosomal inversions. J Hered 87:191–198PubMedGoogle Scholar
  30. Ross R, Hankeln T, Schmidt ER (1997) Complex evolution of tandem-repetitive DNA in the Chironomus thummi species group. J Mol Evol 44:321–326PubMedCrossRefGoogle Scholar
  31. Schaefer J, Schmidt ER (1981) Different repetition frequencies of a 120 base-pair DNA element and its arrangement in Chironomus thummi thummi and C. piger. Chromosoma 84:61–66PubMedCrossRefGoogle Scholar
  32. Schmidt ER (1981) The development of a 120 base-pair repetitive DNA-sequence in Chironomus thummi is correlated to the duplication of defined chromosomal segments. FEBS Lett 129:21–24CrossRefGoogle Scholar
  33. Schmidt ER (1984) A clustered and interspersed repetitive DNA sequence family of Chironomus: the nucleotide sequence of the Cla-element and various flanking sequences. J Mol Biol 178:1–15PubMedCrossRefGoogle Scholar
  34. Schmidt ER (1992) Multicolor in situ hybridization—a helpful technique for precise gene localization. Sci Tech Inform Serv 10(3):80–84Google Scholar
  35. Schmidt ER, Vistorin G, Keyl HG (1980) An AT-rich DNA component in the genomes of Chironomus thummi piger. Chromosoma 76:35–45CrossRefGoogle Scholar
  36. Sella G, Bovero S, Ginepro M, Michailova P, Petrova N, Robotti CA, Zelano V (2004) Inherited and somatic cytogenetic variability in Palearctic populations of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Genome 47:332–344PubMedCrossRefGoogle Scholar
  37. Teng SC, Kim B, Gabriel A (1996) Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383:641–644PubMedCrossRefGoogle Scholar
  38. Zampicinini GP, Blinov A, Cervella P, Guryev V, Sella G (2004) Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display. Genome 47:1154–1163PubMedCrossRefGoogle Scholar
  39. Zelentsova H, Poluectova H, Mnjoian L, Lyozin G, Veleikodvorskaja V, Zhivotovsky L, Kidwell M, Evgenev B (1999) Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108:443–456PubMedCrossRefGoogle Scholar
  40. Zhimulev IF (1998) Polytene chromosomes, heterochromatin and position effect variegation. In: Hall J, Dunlap J, Friedmann Th, Gianelli F (eds) Advances in genetics, vol 37. Academic press, pp 1–555Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paraskeva Michailova
    • 1
  • Julia Ilkova
    • 1
  • Tom Hankeln
    • 2
  • Erwin R. Schmidt
    • 2
  • Anna Selvaggi
    • 3
  • Giampaolo Zampicinini
    • 3
  • Gabriella Sella
    • 3
    Email author
  1. 1.Institute of ZoologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Molecular Genetics and Biosafety ResearchJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of Animal BiologyUniversity of TurinTurinItaly

Personalised recommendations