Genetica

, Volume 134, Issue 2, pp 235–242 | Cite as

New data on the cytology of parthenogenetic weevils (Coleoptera, Curculionidae)

Article

Abstract

Parthenogenesis and, in particular, polyploidy are rare in animals. A number of cases, known among weevils, represent apomictic parthenogenesis—a reproductive mode in which eggs undergo one maturation division, the chromosomes divide equationally, and no reduction takes place. Among parthenogenetic weevils there are two diploids, 48 triploids, 18 tetraploids, six pentaploids, three hexaploids and one decaploid. Eight examined parthenogenetic species are triploids with 33 chromosomes of different morphology, confirming that triploidy is the most common level of ploidy in weevils. The karyotypes are heterogeneous with the presence of meta-, submeta-, subtelo- and acrocentric chromosomes. The C-banding method showed that only two species possess a large amount of heterochromatin visible as a band around the centromere during mitotic metaphase. This agrees with observations that weevils are characterized by a small amount of heterochromatin, undetectable in metaphase plates after C-banding. In three species an atypical course of apomictic oogenesis occurs with stages similar to meiosis, in which chromosomes form bivalents and multivalent clusters. This association of chromosomes probably represents the remnants of meiosis, although these events have nothing to do with recombination. The results support the hypothesis that the evolution of apomictic parthenogenesis in weevils has proceeded through a stage of automixis.

Keywords

Coleoptera Curculionidae Chromosome number C-bands Karyotype Parthenogenesis 

References

  1. Alonso-Zarazaga MA, Lyal CHC (1999) A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera). (Excepting Scolytidae and Platypodidae). Entomopraxis, S.C.P, Barcelona, pp 315Google Scholar
  2. Block K (1969) Chromosomal variation in Agromyzidae. Hereditas 62:357–381PubMedGoogle Scholar
  3. Korotyaev BA (1994) Use of data on distribution of the bisexual and parthenogenetic forms of weevils for faunogenetic reconstructions (Coleoptera, Curculionidae). Verhandluagen des 14. Internationalen Syposiums fur Entomofaunistik in mitteleuropa, SIEEC, pp 264–271Google Scholar
  4. Lachowska D, Rożek M, Holecová M (1998) Karyotypic data on weevils (Coleoptera, Curculionidae). Folia Biol (Kraków) 46:129–136Google Scholar
  5. Lachowska D, Holecová M, Rożek M (2005) C-banding karyotype and NORs analyse in eight species of Barypeithes Duval from Central Europe (Coleoptera, Curculionidae, Entiminae). Caryologia 58:274–280Google Scholar
  6. Levan A, Fredga K, Sonberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  7. Lokki J (1976a) Genetic polymorphism and evolution in parthenogenetic animals. VI. Dipoid and tripoid Polydrsus mollis. Hereditas 82:209–216PubMedCrossRefGoogle Scholar
  8. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  9. Mikulska I (1949) Cytological studies upon genus Otiorrhynchus (Curculionidae, Coleoptera) in Poland. Experientia 5:473–475PubMedCrossRefGoogle Scholar
  10. Mikulska I (1950) The chromosome number in Otiorrhynchus salicic strom. (Curculionidae, Coleoptera) in Poland. Bull Acad Sc B II:269–276Google Scholar
  11. Mikulska I (1953) The chromosomes of parthenogenetic and thelytokian weevil Eusomus ovulum germ. (Curculionidae, Coleoptera). Bull Int Acad Pol B II:293–307Google Scholar
  12. Mikulska I (1960) New data to the cytology of the parthenogenetic weevils of the genus Otiorrhynchus germ (Curculionidae, Coleoptera) from Poland. Cytologia 25:322–333Google Scholar
  13. Normark BB (1996a) Polyploidy of parthenogenetic Aramigus tessellatus (Coleoptera: Curculionidae). Colepts Bull 50:73–79Google Scholar
  14. Normark BB (1996b) Phylogeny and evolution of parthenogenetic weevils of the Aramigus tessellates species complex (Coleoptera: Curculionidae: naupactini): evidence from mitochondrial DNA sequences. Evolution 50:734–745CrossRefGoogle Scholar
  15. Normark BB, Lanteri AA (1998) Incongruence between morphological and mitochondrial-DNA characters suggests hybrid origins of parthenogenetic weevil lineages (genus Aramigus). Syst Biol 47:475–494PubMedCrossRefGoogle Scholar
  16. Petryszak B (1972) Chromosome numbers of Foucartia liturata Striel., Foucartia squamulata (Herbst) and Sciaphilus asperatus (Bonsd.) (Curculionidae, Coleoptera). Zesz Nauk Uniw Jagiellońsk 18:27–63Google Scholar
  17. Rożek M (1994) A new chromosome preparation technique for Coleoptera (Insecta). Chromosome Res 2:76–78PubMedCrossRefGoogle Scholar
  18. Rożek M, Lachowska D (2001) C-bands on chromosomes of four beetle species (Coleoptera: Carabidae, Silphidae, Elateridae, Scarabaeidae). Folia Biol (Kraków) 49:179–182Google Scholar
  19. Rożek M, Lachowska D, Petitpierre E, Holecová M (2004) C-bands on chromosomes of 32 beetle species (Coleoptera: Elateridae, Cantharidae, Oedemeridae, Cerambycidae, Anthicidae, Chrysomelidae, Attelabidae and Curculionidae) Hereditas 140:161–170Google Scholar
  20. Saura A, Lokki J, Suomalainen E (1993) Origin of polyploidy in parthenogenetic weevils. J Theor Biol 163:449–456CrossRefGoogle Scholar
  21. Seiler J (1947) Die Zytologie eines parthenogenetischen Russelkafers, Otiorrhynchus sulcatus F. Chromosoma 3:87–109Google Scholar
  22. Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogenes and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79:151–163CrossRefGoogle Scholar
  23. Smith SG, Virkki N (1978) Animal cytogenetics, vol 3: Insecta. Part 5: Coleoptera. Borntraeger, BerlinGoogle Scholar
  24. Stenberg P, Terhivuo J, Lokki J, Saura A (2000) Clone diversity in the polypoid weevil Otiorhynchus scaber. Hereditas 132:137–142CrossRefGoogle Scholar
  25. Suomalainen E (1940) Beiträge zur Zytologie der parthenogenetischen Insekten. I. Coleoptera. Ann Acad Sci Fenn Series A IV Biol 54:1–144Google Scholar
  26. Suomalainen E (1947) Parthenogenese und Polyploidie bei Rűsselkäfern (Curculionidae). Hereditas 33:425–456PubMedCrossRefGoogle Scholar
  27. Suomalainen E (1969) Evolution in parthenogenetic Curculionidae. Evol Biol 3:261–296Google Scholar
  28. Suomalainen E, Saura A (1973) Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid Curculionidae. Genetics 74:485–508Google Scholar
  29. Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton, FloridaGoogle Scholar
  30. Sumner A (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  31. Takenouchi Y (1969) A further study on the chromosomes of the parthenogenetic weevil Listrodes costirostris Schőnherr from Japan. Caryologia 34:360–368Google Scholar
  32. Takenouchi Y (1970) Three further study on chromosomes of Japanese weevils (Coleoptera: Curculionidae). Can J Genet Cytol 12:273–277Google Scholar
  33. Takenouchi Y (1976) On the chromosomes of parthenogenetic Curculionid weevils in Japan. Proc Jpn Acad 52:126–129Google Scholar
  34. Takenouchi Y (1978) A chromosome study of the parthenogenetic rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) in Japan. Experientia 34:444–445CrossRefGoogle Scholar
  35. Takenouchi Y (1983) The occurrence of a decaploid embryo in the pentaploid parthenogenetic weevil race as a result of a low temperature treatment (Curculionidae: Coleoptera). La Kromosomo II(30–31):935–936Google Scholar
  36. Takenouchi Y (1986) Origin of parthenogenetic weevils. Iden 40:50–89Google Scholar
  37. Wanat M, Mokrzycki T (2005) A new checklist of the weevils of Poland (Coleoptera: Curculionoidea). Genus 16:69–117Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Dorota Lachowska
    • 1
  • Maria Rożek
    • 1
  • Milada Holecová
    • 2
  1. 1.Institute of Systematics and Evolution of Animals Polish Academy of ScienceKrakówPoland
  2. 2.Department of ZoologyComenius UniversityBratislavaSlovakia

Personalised recommendations