, 130:99 | Cite as

The karyotypes of the thorny catfishes Wertheimeria maculata Steindachner, 1877 and Hassar wilderi Kindle, 1895 (Siluriformes: Doradidae) and their relevance in doradids chromosomal evolution

  • Eduardo S. Eler
  • Jorge A. Dergam
  • Paulo C. Vênere
  • Lílian C. Paiva
  • Gabriela A. Miranda
  • Alessandro A. Oliveira
Brief Report


We studied the karyotypes of two doradids, the rare and endangered Wertheimeria maculata and a derived Amazonian species, Hassar wilderi. Cytogenetic characterization was assessed using conventional staining (Giemsa), C-banding, and NOR banding. Both species had 2n = 58 chromosomes but differed in their chromosome formulae, 24 m + 14sm + 8st + 12a for W. maculata and 32 m + 16sm + 10st for H. wilderi. In W. maculata heterochromatin was mainly telomeric, and three chromosomes had a fully heterochromatic arm; in H. wilderi heterochromatin was also predominantly telomeric and evident in many more chromosomes. Hassar wilderi also presented one pair of homologues with a fully heterochromatic arm. In both species, nucleolar organizer regions were restricted to one pair of subtelocentric chromosomes. Assuming a basal position for W. maculata, we hypothesized that underlying conserved diploid and NOR-bearing chromosome numbers, chromosomal evolution in doradids has involved pericentric inversions and an increase of heterochromatic blocks.


Brazilian coastal basins Conservation genetics Cytotaxonomy South American biodiversity 



The authors wish to thank two anonymous reviewers for helpful comments, Silvia G. Pompolo for using her image processing lab, and Claudio Oliveira for allowing access to his Neotropical fish database. Emily Toriani corrected the final English version. This work was partially supported by CNPq, Universidade Federal de Viçosa, and Fundação de Amparo a Pesquisa de Mato Grosso/FAPEMAT.


  1. Britton-Davidian J (2001) How do chromosomal changes fit in? J Evol Biol 14:872–873CrossRefGoogle Scholar
  2. De Pinna MCC (1998) Phylogenetic relationships of Neotropical Siluriformes (Teleostei: Ostariophysi): historical overview and synthesis of hypotheses. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CA (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, RS, Brazil, pp 279–330Google Scholar
  3. Egozcue J (1971) Técnicas em Citogenética. Editorial Espaxs, Barcelona, 144 pGoogle Scholar
  4. Fenocchio AS, Pastori MC, Roncati HA, Moreira Filho O, Bertollo LAC (2003) A cytogenetic survey of the fish fauna from Argentina. Caryologia 56:197–204Google Scholar
  5. Ferraris Jr CJ, Reis RE (2005) Neotropical catfish diversity: an historical perspective. Neotropical Ichthyol 3:453–454Google Scholar
  6. Higuchi H (1992) A phylogeny of South American thorny catfishes (Osteichthyes:Siluriformes:Doradidae). D. P. thesis. Harvard UniversityGoogle Scholar
  7. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  8. King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, CambridgeGoogle Scholar
  9. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  10. Lundberg JG, Littmann MW (2003) Pimelodidae (long-whiskered catfishes). In: Reis RE, Kullander SO, Ferraris Jr CJ (eds) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, Brazil, pp 432–446Google Scholar
  11. Miranda-Ribeiro A (1911) Fauna Brasiliense. Peixes IV(a). Eleutherobranchios Aspirophoros. Archivos do Museu Nacional do Rio de Janeiro 16:1–504Google Scholar
  12. Moyer AR, Burr BM, Krajewski C (2004) Phylogenetic relationships of thorny catfishes (Siluriformes:Doradidae) inferred from molecular and morphological data. Zool J Linn Soc 140:551–575CrossRefGoogle Scholar
  13. Murphy WJ, Larkin DM, van der Wind AE, Bourque G, Tesler G, Auvil L, Beever JE, Chowdary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O’Brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617PubMedCrossRefGoogle Scholar
  14. Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci 98:12084–12088PubMedCrossRefGoogle Scholar
  15. Oliveira C, Gosztonyi AE (2000) A cytogenetic study of Diplomystes mesembrinus (Teleostei, Siluriformes, Diplomystidae) with a discussion of chromosome evolution in siluriforms. Caryologia 53:31–37Google Scholar
  16. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci 100:7672–7677PubMedCrossRefGoogle Scholar
  17. Sabaj MH, Ferraris CJ Jr (2003) Family Doradidae (thorny catfishes). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, Brazil, pp 45–469Google Scholar
  18. Sumner AT (1972) A simple technique for demonstrating centromeric heterocromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  19. Troy WP, Miyazawa CS (2000) Doras eigenmanni (Siluriformes, Doradidae) para o Pantanal – MT, dois citótipos ou duas espécies? VIII Simpósio de Citogenética e Genética de Peixes, Manaus, BrazilGoogle Scholar
  20. Vênere PC (1998) Diversificação cariotípica em peixes do médio rio Araguaia, com ênfase em Characiformes e Siluriformes (Teleostei, Ostariophysi). D.Sci. thesis, Universidade Federal de São Carlos, BrazilGoogle Scholar
  21. White MJD (1978) Modes of speciation. W.H Freeman and Company, San FranciscoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Eduardo S. Eler
    • 1
  • Jorge A. Dergam
    • 2
  • Paulo C. Vênere
    • 3
  • Lílian C. Paiva
    • 2
  • Gabriela A. Miranda
    • 2
  • Alessandro A. Oliveira
    • 2
  1. 1.Genética, Conservação e Biologia Evolutiva – Instituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Departamento de Biologia AnimalUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Ciências Biológicas e da SaúdeInstituto de Ciências e Letras do Médio Araguaia, Universidade Federal de Mato GrossoPontal do AraguaiaBrazil

Personalised recommendations