Advertisement

Genetica

, Volume 127, Issue 1–3, pp 243–252 | Cite as

Genomic organization and evolution of the 5S ribosomal DNA in Tilapiini fishes

  • F. A. Alves-Costa
  • A. P. Wasko
  • C. Oliveira
  • F. Foresti
  • C. Martins
Article

Summary

5S rDNA sequences present an intense dynamism and have proved to be valuable as genetic markers to distinguish closed related species and also in the understanding of the evolutionary dynamic of repetitive sequences in the genomes. In order to identify patterns of 5S rDNA organization and their evolution in the genome of fish species, such genomic segment was investigated in the tilapias Oreochromis niloticus and Tilapia rendalli, and in the hybrid O. urolepis hornorum × O. mossambicus. A dual 5S rDNA system was identified in the three analyzed tilapia samples. Although each 5S rDNA class was conserved among the three samples, a distinct 5S rDNA genome organization pattern could be evidenced for each sample. The presence of a dual 5S rDNA system seems to be a general trait among non-related teleost fish orders, suggesting that evolutionary events of duplication have occurred before the divergence of the main groups of teleost fishes.

Keywords

Cichlidae fish NTS Oreochromis 5S rDNA Tilapia tilapia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990Basic local alignment search toolJ. Mol. Biol.215403410PubMedCrossRefGoogle Scholar
  2. Amarasinghe, V., Carlson, J.E. 1998Physical mapping and characterization of 5S rRNA genes in gouglas-firAm. Gen. Assoc.89495500Google Scholar
  3. Baker, W.J., Hedderson, T.A., Dransfield, J. 2000Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5S rDNA spacer sequence dataMol. Phyl. Evol.14218231CrossRefGoogle Scholar
  4. Bardakci, F., Skibinski, D.O.F. 1994Application of the RAPD technique in tilapia fish: species and subspecies identificationHeredity73117123PubMedGoogle Scholar
  5. Baum, B.R., Bailey, L.G. 1997The molecular diversity of the 5S rRNA gene in Kengyilia alatavica (Drobov) J. L. Yang, Yen & Baum (Poaceae: Triticeae): potential genomic assignment of different rDNA unitsGenome40215228PubMedCrossRefGoogle Scholar
  6. Belkhiri, A., Buchko, J., Klassen, G.R. 1992The ribosomal RNA gene in Pythium species: two different genomic locationsMol. Biol. Evol.910891102PubMedGoogle Scholar
  7. Cronn, R.C., Zhao, X., Paterson, A.H., Wendel, J.F. 1996Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottonsJ. Mol. Evol.42685705PubMedCrossRefGoogle Scholar
  8. Deiana, A.M., Cau, A., Salvadori, S., Coluccia, E., Cannas, R., Milia, A., Tagliavini, J. 2000Major and 5S ribosomal␣sequences of the largemouth bass Micropterus salmoides Perciformes, Centrarchidae are localized in GC-rich regions of the genomeChromosome Res.8213218PubMedCrossRefGoogle Scholar
  9. Drouin, G., Moniz Sá, M. 1995The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene familiesMol. Biol. Evol.12481493PubMedGoogle Scholar
  10. Felsenstein, J. 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791CrossRefGoogle Scholar
  11. Frederiksen, S., Cao, H., Lomholt, B., Levan, G., Hallemberg, C. 1997The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12→qter and the pseudogene repeat maps to 12q12Cytogenet. Cell Genet.76101106PubMedGoogle Scholar
  12. Galls, F., Metz, J.A.J. 1998Why are there so many cichlid species?Trends Ecol. Evol.1312CrossRefGoogle Scholar
  13. Gornung, E., Innocentiis, S., Annesi, F., Sola, L. 2000Zebrafish 5S rRNA genes map to the long arms of chromosome 3Chromosome Res.8362PubMedCrossRefGoogle Scholar
  14. Greenwood, P.H. 1991SpeciationKeenleyside, M.H.A. eds. Cichlid Fishes: Behavior, Ecology and EvolutionChapman & HallNew York86102Google Scholar
  15. Hallemberg, C., Nederby-Nielsen, J., Frederiksen, S. 1994Characterization of 5S rRNA genes from mouseGene142291295CrossRefGoogle Scholar
  16. Hanson, R.E., Islam-Faridi, M.N., Percival, E.A., Crane, C.F., Ji, Y., McKnight, T.D., Stelly, D.M., Price, H.J. 1996Distribution of 5S and 18–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestorsChromosoma1055561PubMedCrossRefGoogle Scholar
  17. Kimura, M. 1980A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequencesJ. Mol. Evol.16111120PubMedCrossRefGoogle Scholar
  18. Komiya, H., Takemura, S. 1979Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liverJ. Biochem.100369374Google Scholar
  19. Komiya, H., Hasegawa, M. 1986Differentiation of oocyte – and somatic – type 5S rRNAs in animalsJ. Biochem.100369374PubMedGoogle Scholar
  20. Kumar, S., Tamura, K., Jackobsen, I.B., Nei, M. 2001MEGA2: molecular evolutionary genetics analysis sofwareBioinformatics1712441245PubMedCrossRefGoogle Scholar
  21. Leah, R., Frederiksen, S., Engberg, J., Sorensen, P.D. 1990Nucleotide sequence of a mouse 5S rRNA variant geneNucleic Acids Res.187441PubMedGoogle Scholar
  22. Lovshin, L.L. 2000Tilapia culture in BrazilCosta-Pierce, A.Rakocy, J.E. eds. A Tilapia culture in the AmericasThe World Aquaculture SocietyBaton Rouge, Louisiana133140Google Scholar
  23. Martins, C., Wasko, A.P., Oliveira, C., Wright, J.M. 2000Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus Hereditas1333946PubMedCrossRefGoogle Scholar
  24. Martins, C., Galetti, P.M.,Jr. 2001aOrganization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct non-transcribed spacersGenome44903910CrossRefGoogle Scholar
  25. Martins, C., Galetti, P.M.,Jr. 2001bTwo 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes?Genetica111439446CrossRefGoogle Scholar
  26. Martins, C., Wasko, A.P. 2004Organization and evolution of 5S ribosomal DNA in the fish genomeWilliams, C.R. eds. Focus on Genome ResearchNova Science PublishersHauppauge, NY289318Google Scholar
  27. Martins, C., Wasko, A.P., Oliveira, C., Porto-Foresti, F., Parise-Maltempi, P.P., Wright, J., Foresti, F. 2002Dynamics of 5S rDNA in the tilápia (Oreochromis niloticus) genome: repeat units, inverted sequences, pseudogenes and chromosome lociCytogenet. Genome Res.987885PubMedCrossRefGoogle Scholar
  28. Morán, P., Martínez, J.L., Garcia-Vásquez, E., Pendás, A.M. 1996Sex linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss)Cytogenet. Cell Genet.75145150PubMedGoogle Scholar
  29. Ota, K., Tateno, Y., Gojobori, T. 2003Highly differentiated and conserved sex chromosome in fish species (Aulopus japonicus: Teleostei, Aulopidae)Gene317187193PubMedCrossRefGoogle Scholar
  30. Pendás, A.M., Móran, P., Freije, J.P., Garcia-Vásquez, E. 1994Chromosomal location and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNACytogenet. Cell Genet.673136PubMedGoogle Scholar
  31. Pendás, A.M., Morán, P., Martínez, J.L., Garcia-Vazquez, E. 1995Applications of 5S rDNA in Atlantic salmon, brown trout, and in Atlantic salmon × brown trout hybridMol. Ecol.4275276PubMedGoogle Scholar
  32. Pino, E.M., Murphy, C., Masson, P.H., Gall, J.G. 19925S rRNA-encoding genes of the marsupial frog Gastrotheca riobambae Gene111235238PubMedCrossRefGoogle Scholar
  33. Pullin, R.S.V. 1991Cichlids in aquacultureKeenleyside, M.H.A. eds. Cichlid Fishes: Behavior, Ecology and EvolutionChapman & HallNew York280309Google Scholar
  34. Robles, F., la Herran, R., Ludwig, A., Rejon, C.R., Rejon, M.R., Garrido-Ramos, M.A. 2005Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeonGenome481828PubMedCrossRefGoogle Scholar
  35. Sadjak, S.L., Reed, K.M., Phillips, R.B. 1998Intraindividual and interspecies variation in the 5S rDNA of coregonid fishJ. Mol. Evol.46680688CrossRefGoogle Scholar
  36. Sambrook, J., Russel, D.W. 2001Molecular Cloning. A Laboratory Manual. Third EditionCold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  37. Suzuki, H., Moriwaki, K., Sakurai, S. 1994Sequences and evolutionary analysis of mouse 5S rDNAsMol. Biol. Evol.11704710PubMedGoogle Scholar
  38. Suzuki, H., Sakurai, S., Matsuda, Y. 1996Rat 5S rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19Cytogenet. Cell Genet.7214PubMedCrossRefGoogle Scholar
  39. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.2246734680PubMedGoogle Scholar
  40. Venkatesh, B. 2003Evolution and diversity of fish genomesCurr. Opin. Genet. Develop.13588592CrossRefGoogle Scholar
  41. Wasko, A.P., Martins, C., Wright, J.M., Galetti, P.M.,Jr. 2001Molecular organization of 5S rDNA in fishes of the genus Brycon Genome44893902PubMedCrossRefGoogle Scholar
  42. Wasko, A.P., Martins, C., Oliveira, C., Foresti, F. 2003Non-destrutive genetic sampling in fish: an improved method for DNA extraction from fish fins and scalesHereditas138161165PubMedCrossRefGoogle Scholar
  43. Zimmermann, S., 1999. Incubação Artificial: técnica que permite a produção de tilápias do Nilo geneticamente superiores. Panor. Aqüic. mar./abr.: 69Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • F. A. Alves-Costa
    • 1
  • A. P. Wasko
    • 1
  • C. Oliveira
    • 1
  • F. Foresti
    • 1
  • C. Martins
    • 1
  1. 1.Instituto de Biociências, Departamento de MorfologiaUNESP – Universidade Estadual PaulistaBotucatuBrazil

Personalised recommendations