Advertisement

Genetica

, 127:217 | Cite as

Adaptive evolution in a spatially structured asexual population

  • Isabel Gordo
  • Paulo R. A. CamposEmail author
Article

Abstract

We study the process of adaptation in a spatially structured asexual haploid population. The model assumes a local competition for replication, where each organism interacts only with its nearest neighbors. We observe that the substitution rate of beneficial mutations is smaller for a spatially structured population than that seen for populations without structure. The difference between structured and unstructured populations increases as the adaptive mutation rate increases. Furthermore, the substitution rate decreases as the number of neighbors for local competition is reduced. We have also studied the impact of structure on the distribution of adaptive mutations that fix during adaptation.

Keywords

fixation clonal interference adaptation spatial structure local competition 

References

  1. Bachtrog, D., Gordo, I. 2004Adaptive evolution of asexual populations under muller’s ratchetEvolution5814031413PubMedCrossRefGoogle Scholar
  2. Barton, N. 1993The probability of fixation of a favourable allele in a subdivided populationGenetical Research62149158Google Scholar
  3. Barton, N.H. 1994The reduction in fixation probability caused by substitutions at linked lociGenetical Research64199208Google Scholar
  4. Barton, N.H. 1995Linkage and the limits to natural selectionGenetics140821841PubMedGoogle Scholar
  5. Boerlijst, M.C., Hogeweg, P.A. 1991Spiral wave structure in pre-biotic evolution - hypercycles stable against parasitesPhysica D481728CrossRefGoogle Scholar
  6. Campos, P.R.A., Oliveira, V.M. 2004Mutational effects on the clonal interference phenomenonEvolution58932937PubMedCrossRefGoogle Scholar
  7. Campos, P.R.A., Oliveira, V.M., Giro, R., Galvao, D. 2004Emergence of prime numbers as the result of evolutionary strategyPhysical Review Letters93098107-1-098107-4CrossRefGoogle Scholar
  8. Charlesworth, B., Morgan, M., Charlesworth, D. 1993The effect of deleterious mutations on neutral molecular variationGenetics13412891303PubMedGoogle Scholar
  9. Charlesworth, B., Nordborg, M., Charlesworth, D. 1997The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populationsGenet. Res.70155174PubMedCrossRefGoogle Scholar
  10. Cherry, J.L., Wakeley, J. 2003A diffusion approximation for selection and drift in a subdivided populationGenetics163421428PubMedGoogle Scholar
  11. Oliveira, V.M., Campos, P.R.A. 2004Dynamics of fixation of advantageous mutationsPhysica A337546554CrossRefGoogle Scholar
  12. Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F. 1998Rates of spontaneous mutationGenetics14816671686PubMedGoogle Scholar
  13. Elena, S. F. and R. E. Lenski (2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 4.Google Scholar
  14. Gerrish, P.J., Lenski, R.E. 1998The fate of competing beneficial mutations in an asexual populationGenetica102127144PubMedCrossRefGoogle Scholar
  15. Gessler, D.D.G. 1995The constraints of finite size in asexual populations and the rate of the ratchetGenetical Research66241253PubMedGoogle Scholar
  16. Gillespie J.H. 1991. The Causes of Molecular Evolution Oxford University PressGoogle Scholar
  17. Haigh, J. 1978The accumulation of deleterious genes in a population - muller’s ratchetTheor. Popul. Biol.14251267PubMedCrossRefGoogle Scholar
  18. Haldane, J.B.S. 1927A mathematical theory of natural and artificial selection. part v: Selection and mutationProc. Camb. Phil. Soc.26220230CrossRefGoogle Scholar
  19. Hill, W.G., Robertson, A. 1966The effect of linkage on the limits to artificial selectionGenet. Res.8269294PubMedGoogle Scholar
  20. Imhof, M., Schlotterer, C. 2001Fitness effects of advantageous mutations in evolving escherichia coli populationsPNAS9811131117PubMedCrossRefGoogle Scholar
  21. Johnson, T. 1999The approach to mutation-selection balance in an infinite assexual population, and the evolution of mutation ratesProc. R. Soc. Lond. B26623892397CrossRefGoogle Scholar
  22. Johnson, T., Barton, N.H. 2002The effect of deleterious alleles on adaptation in asexual organismsGenetics162395411PubMedGoogle Scholar
  23. Joseph, S.B., Hall, D.W. 2004Spontaneous mutations in diploid saccharomyces cerevisiae: More beneficial than expectedGenetics16818171825PubMedCrossRefGoogle Scholar
  24. Keeling, M.J. 1999The effects of local spatial structure on epidemiological invasionsProc. R. Soc. Lond. B266859867CrossRefGoogle Scholar
  25. Keitt, T.H., Johnson, A.R. 1995Spatial heterogeneity and anomalous kinetics: emergent patterns in diffusion-limited predator-prey interactionJ. Theor. Biol.172127139CrossRefGoogle Scholar
  26. Kimura M., 1983 The neutral theory of molecular evolution. Cambridge University PressGoogle Scholar
  27. Kimura, M., Crow, J.F. 1964The number of alleles that can be maintained in a finite populationsGenetics49725738PubMedGoogle Scholar
  28. Kisdi, E., Geritz, S.A.H. 2003On the coexistence of perennial plants by the competition-colonization trade-offAm. Nat.161123138CrossRefGoogle Scholar
  29. Lenski, R.E., Rose, M.R., Simpson, S.C., Tadler, S.C. 1991Longterm experimental evolution in escherichia coli.i. adaptation and divergence during 2,000 generationsAmerican Naturalist13813151341CrossRefGoogle Scholar
  30. Lipowski, A. 1999Oscillatoty behavior in a lattice prey-predator systemPhys. Rev. E6051795184CrossRefGoogle Scholar
  31. Manning Thompson, J.T. D.J. 1984Muller’s ratchet and the accumulation of favourable mutationsActa Biotheor.33219225CrossRefGoogle Scholar
  32. Maruyama, T. 1970On the probability of fixation of mutatnt genes in subdivided populationsGenetical Research15221225PubMedCrossRefGoogle Scholar
  33. Maruyama, T. 1974A simple proof that certain quantities are independent of the geographical structure of populationTheoretical Population Biology5148154PubMedCrossRefGoogle Scholar
  34. Nagylaki, T. 1980The strong-migration limit in geographically structured populationsJournal of Mathematical Biology9101114PubMedCrossRefGoogle Scholar
  35. Nagylaki, T. 1982Geographical invariance in population geneticsJournal of Theoretical Biology99159172PubMedCrossRefGoogle Scholar
  36. Nilsson, A.I., Kugelberg, E., Berg, O.G., Anderson, D.I. 2004Experimental adaptation of salmonella typhimurium to miceGenetics16811191130PubMedCrossRefGoogle Scholar
  37. Ohsawa, K., Kawasaki, K., Takasu, F., Shigesada, N. 2002Recurrent habitat disturbance and species diversity in a multiple-competitive species systemJ. Theor. Biol.216123138PubMedCrossRefGoogle Scholar
  38. Orr, H.A. 2000The rate of adaptation in asexualsGenetics155961968PubMedGoogle Scholar
  39. Orr, H.A. 2003The distribution of fitness effects among beneficial mutationsGenetics16315191526PubMedGoogle Scholar
  40. Rosas, A., Ferreira, C.P., Fontanari, J.F. 2002Evolution of protein synthesis in a lattice model of replicatorsPhys. Rev. Lett.89188101CrossRefGoogle Scholar
  41. Rose, D., Rousset, F. 2003Selection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominace, selfing and local extintionsGenetics16521532166Google Scholar
  42. Rozen, D.E., Visser, J.A.G.M., Gerrish, P.J. 2002Fitness effects of fixed beneficial mutations in microbial populationsCurr. Biol.1210401045PubMedCrossRefGoogle Scholar
  43. Sanjuan, R., Moya, A., Elena, S.F. 2004The distribution of fitness effects caused by single-nucleotide substituion in an rna virusPNAS10183968401PubMedCrossRefGoogle Scholar
  44. Slatkin, M. 1981Fixation probabilities and times in a subdivided populationEvolution35477488CrossRefGoogle Scholar
  45. Watterson, G.A. 1975Number of segregating sites in genetic models without recombinationTheor. Popul. Biol.10256276CrossRefGoogle Scholar
  46. Whitlock, M.C. 2002Selection, load and inbreeding depression in a large metapopulationGenetics16011911202PubMedGoogle Scholar
  47. Wilke, C.O. 2004The speed of adaptation in large asexual populationsGenetics16720452053PubMedCrossRefGoogle Scholar
  48. Wootton, J.T. 2001Local interactions predict large-scale pattern in empirically derived cellular automataNature413841844PubMedCrossRefGoogle Scholar
  49. Wright, S. 1931Evolution in mendelian populationsGenetics1697159PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Instituto Gulbenkian de CiênciasOeirasPortugal
  2. 2.Departamento de Física e MatemáticaUniversidade Federal Rural de PernambucoDois IrmãosBrazil

Personalised recommendations