, Volume 127, Issue 1–3, pp 1–9 | Cite as

Reversed selection responses in small populations of the housefly (Musca domestica L.)

  • Lisa M. MeffertEmail author
  • Jennifer L. Regan


We compared the efficacy of artificial and natural selection processes in purging the genetic load of perpetually small populations. We subjected replicate lines of the housefly (Musca domestica L.), recently derived from the wild, to artificial selection for increased mating propensity (i.e., the proportion of male–female pairs initiating copulation within 30 min) in efforts to cull out the inbreeding depression effects of long-term small population size (as determined by a selection protocol for increased assortative mating). We also maintained parallel non-selection lines for assessing the spontaneous purge of genetic load due to inbreeding alone. We thus evaluated the fitness of artificially and ‘naturally’ purging populations held at census sizes of 40 individuals over the course of 18 generations. We found that the artificially selected lines had significant increases in mating propensity (up to 46% higher from the beginning of the protocol) followed by reversed selection responses back to the initial levels, resulting in non-significant heritabilities. Nevertheless, the ‘naturally’ selected lines had significantly lower fitness overall (a 28% reduction from the beginning of the protocol), although lower effective population sizes could have contributed to this effect. We conclude that artificial selection bolstered fitness, but only in the short-term, because the inadvertent fixation of extant genetic load later resulted in pleiotropic fitness declines. Still, the short-term advantage of the selection protocol likely contributed to the success of the speciation experiment since our recently-derived housefly populations are particularly vulnerable to inbreeding depression effects on mating behavior.


artificial selection genetic load mating behavior pleiotropy purge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballou, J.D. 1997Ancestral inbreeding only minimally affects inbreeding depression in mammalian populationsJ. Hered.88169178PubMedGoogle Scholar
  2. Bijlsma, R., Bundgaard, J., Boerema, A.C. 2000Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila J. Evol. Biol.13502514CrossRefGoogle Scholar
  3. Bijlsma, R., Bundgaard, J., Putten, W.F. 1999Environmental dependence of inbreeding depression and purging in Drosophila melanogaster J. Evol. Biol.1211251137CrossRefGoogle Scholar
  4. Brewer, B.A., Lacy, R.C., Foster, M.L., Alaks, G. 1990Inbreeding depression in insular and central populations of Peromyscus miceJ. Hered.81257266PubMedGoogle Scholar
  5. Bryant, E.H., Meffert, L.M., McCommas, S.A. 1990Fitness rebound in serially bottlenecked populations of the house flyAm. Nat.136543549CrossRefGoogle Scholar
  6. Bulmer, M.G. 1971The effect of selection on genetic variabilityAm. Nat.105201211CrossRefGoogle Scholar
  7. Burnet, B., Connolly, K. 1974Activity and sexual behaviour in Drosophila melanogasterAbeelen, J.H.F. eds. The Genetics of BehaviourNorth-Holland PublishingThe Netherlands201258. Google Scholar
  8. Byers, D.L., Waller, D.M. 1999Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depressionAnnu. Rev. Ecol. Syst.30479513CrossRefGoogle Scholar
  9. Caballero, A., Toro, M.A., López-Fanjul, C. 1991The response to artificial selection from new mutations in Drosophila melanogaster Genetics12789102Google Scholar
  10. Charlesworth, B. 1998The effect of synergistic epistasis on the inbreeding loadGenet. Res. Camb.718589Google Scholar
  11. Charlesworth, B., Charlesworth, D. 1987Inbreeding depression and its evolutionary consequencesAnnu. Rev. Ecol. Syst.18237268CrossRefGoogle Scholar
  12. Crnokrak, P., Barrett, S.C.H. 2002Perspective: purging the genetic load: a review of the experimental evidenceEvolution5623472358PubMedCrossRefGoogle Scholar
  13. Crow, J.F. 1993Mutation, mean fitness, and genetic loadFutuyma, D.Antonovics, J. eds. in Oxford Surveys in Evolutionary BiologyOxford University PressOxford342Google Scholar
  14. Crow, J.F. & N.E. Morton, 1955. Measurement of gene frequency drift in small populations. Evolution : 202–214.Google Scholar
  15. Day, S.B., Bryant, E.H., Meffert, L.M. 2003The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potentialEvolution5713141324PubMedCrossRefGoogle Scholar
  16. Dudash, M.R., Carr, D.E., Fenster, C.B. 1997Five generations of enforced selfing and outcrossing in Mimulus guttatus: inbreeding depression variation at the population and family levelEvolution515465CrossRefGoogle Scholar
  17. Falconer, D.S. 1989Introduction to Quantitative Genetics2nd edn. LongmanNew YorkGoogle Scholar
  18. Faugeres, A., Petit, C., Thibout, E. 1971The components of sexual selectionEvolution25265275CrossRefGoogle Scholar
  19. Frankham, R. 1995aInbreeding and extinction: a threshold effectConserv. Biol.9792799CrossRefGoogle Scholar
  20. Frankham, R. 1995bConservation geneticsAnnu. Rev. Genet.29305327CrossRefGoogle Scholar
  21. Frankham, R., Gilligan, D.M., Morris, D., Briscoe, D.A. 2001Inbreeding and extinction: effects of purgingConserv. Genet.2279285CrossRefGoogle Scholar
  22. Frankham, R., Yoo, B.H., Sheldon, B.L. 1988Reproductive fitness and artificial selection in animal breeding: culling on fitness prevents a decline in reproductive fitness in lines of Drosophila melanogaster selected for increased inebriation timeTheor. Appl. Genet.76909914CrossRefGoogle Scholar
  23. García, N., López-Fanjul, C., García-Dorado, A. 1994The genetics of viability in Drosophila melanogaster: effects of inbreeding and artificial selectionEvolution4812771285CrossRefGoogle Scholar
  24. Hedrick, P.W. 1994Purging inbreeding depression and the probability of extinction: full-sib matingJ. Hered.73363372Google Scholar
  25. Hill, W.G., Caballero, A. 1992Artificial selection experimentsAnnu. Rev. Ecol. Syst.23287310CrossRefGoogle Scholar
  26. Hollingsworth, M.J., Maynard Smith, J. 1955The effects of inbreeding on rate of development and on fertility in Drosophila subobscura J. Genet.53295314CrossRefGoogle Scholar
  27. Keightley, P.D., Hill, W.G. 1992Quantitative genetic variation in body size of mice from new mutationsGenetics131693700PubMedGoogle Scholar
  28. Kondrashov, A.S. 1995Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?J. Theor. Biol.175583594PubMedCrossRefGoogle Scholar
  29. Lacy, R.L., Alaks, G., Walsh, A. 1996Hierarchical analysis of inbreeding depression in Peromyscus polionotus Evolution5021872200CrossRefGoogle Scholar
  30. Lacy, R.C., Ballou, J.D. 1998Effectiveness of selection in reducing the genetic load in populations of Peromyscus polionotus during generations of inbreedingEvolution52900909CrossRefGoogle Scholar
  31. Lande, R. 1994Risk of population extinction from new deleterious mutationsEvolution4814601469CrossRefGoogle Scholar
  32. Lande, R. 1995Mutation and conservationConserv. Biol.9782791CrossRefGoogle Scholar
  33. Lande, R., Schemske, D.W., Schultz, S.T. 1994High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutationsEvolution48965978CrossRefGoogle Scholar
  34. Latter, B.D.H., Mulley, J.C. 1995Genetic adaptation to captivity and inbreeding depression in small laboratory populations of Drosophila melanogaster Genetics139255266PubMedGoogle Scholar
  35. Latter, B.D.H., Mulley, J.C., Reid, D., Pascoe, L. 1995Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster Genetics139287297PubMedGoogle Scholar
  36. López, M., López-Fanjul, C. 1993Spontaneous mutation for a quantitative trait in Drosophila melanogaster Genet. Res. Camb.61107116Google Scholar
  37. López-Fanjul, C., Fernandez, A., Toro, M.A. 2000Epistasis and the conversion of non-additive genetic variance at population bottlenecksTheor. Popul. Biol.584959PubMedCrossRefGoogle Scholar
  38. López-Fanjul, C., Villaverde, A. 1989Inbreeding increases genetic variance for viability in Drosophila melanogaster Evolution4318001804CrossRefGoogle Scholar
  39. Lynch, M., Connery, J., Bürger, R. 1995Mutational meltdowns in sexual populationsEvolution4910671080CrossRefGoogle Scholar
  40. Markow, T.A. 1981Courtship behavior and control of reproductive isolation between Drosophila mojavensis and Drosophila arizonensis Evolution3510221026CrossRefGoogle Scholar
  41. McCall, D., Waller, M., Mitchell-Olds, T. 1994Effects of serial inbreeding on fitness components in Impatiens capensis Evolution48818827CrossRefGoogle Scholar
  42. Meffert, L.M., Bryant, E.H. 1991Mating propensity and courtship behavior in serially bottlenecked lines of the houseflyEvolution45293306CrossRefGoogle Scholar
  43. Meffert, L.M., Bryant, E.H. 1992Divergent ambulatory and grooming behavior in serially bottlenecked lines of the houseflyEvolution4613991407CrossRefGoogle Scholar
  44. Meffert, L.M., Regan, J.L. 2002A test of speciation via sexual selection on female preferencesAnim. Behav.64955965CrossRefGoogle Scholar
  45. Meffert, L.M., Regan, J.L., Brown, B.W. 1999Convergent evolution of the mating behaviour of founder-flush populations of the houseflyJ. Evol. Biol.12859868CrossRefGoogle Scholar
  46. Miller, P.S., Hedrick, P.W. 2001Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster J. Evol. Biol.14595601CrossRefGoogle Scholar
  47. Mooers, A.Ø., Rundle, H.D., Whitlock, M.C. 1999The effects of selection and bottlenecks on male mating success in peripheral isolatesAm. Nat.153437444CrossRefGoogle Scholar
  48. Parsons, P.A. 1974Mating speed as a component of fitness in Drosophila Behav. Genet.4395404PubMedCrossRefGoogle Scholar
  49. Poon, A., Otto, S.P. 2000Compensating for our load of mutations: freezing the meltdown of small populationsEvolution5414671479PubMedCrossRefGoogle Scholar
  50. Reed, D., Bryant, E.H. 2001Fitness, genetic load and purging in experimental populations of the houseflyConserv. Genet.25762CrossRefGoogle Scholar
  51. Reed, D.H., Lowe, E.H., Briscoe, D.A., Frankham, R. 2003Inbreeding and extinction: effects of rate of inbreedingConserv. Genet.4405410CrossRefGoogle Scholar
  52. Regan, J.L., Meffert, L.M., Bryant, E.H. 2003A direct experimental test of founder-flush effects on the evolutionary potential for assortative matingJ. Evol. Biol.16302312PubMedCrossRefGoogle Scholar
  53. Robertson, A. 1952The effect of inbreeding on the variation due to recessive genesGenetics37189207PubMedGoogle Scholar
  54. Rodríguez-Ramilo, S.T., Pérez-Figeroa, A., Fernández, B., Fernandez,  J., Caballero, A. 2004Mutation-selection balance accounting for genetic variation for viability in Drosophila melanogaster as deduced from an inbreeding and artificial selection experimentJ. Evol. Biol.17528541PubMedCrossRefGoogle Scholar
  55. Rose, M.R. 1984Artificial selection on a fitness component in Drosophila melanogaster Evolution38516526CrossRefGoogle Scholar
  56. Saccheri, I.J., Brakefield, P.M., Nichols, R.A. 1996Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae)Evolution5020002013CrossRefGoogle Scholar
  57. SAS 1988. SAS Institute, Inc. Cary, North CarolinaGoogle Scholar
  58. Schultz, S., Lynch, M. 1997Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossingEvolution5113631371CrossRefGoogle Scholar
  59. Sharp, P.M. 1984The effect of inbreeding on competitive male-mating ability in Drosophila melanogaster Genetics106601612PubMedGoogle Scholar
  60. Spielman, D., Frankham, R. 1992Modeling problems in conservation genetics using captive Drosophila populations: improvement of reproductive fitness due to immigration of one individual into small partially inbred populationsZoo. Biol.11343351CrossRefGoogle Scholar
  61. Thornhill, N.W. 1993The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical PerspectivesUniversity of Chicago PressChicagoGoogle Scholar
  62. Oosterhout, C., Smit, G., Heuven, M.K., Brakefield,  P.M. 2000aPedigree analysis on small laboratory populations of the butterfly Bicyclus anynana: the effects of selection on inbreeding and fitnessConserv. Genet.4321328CrossRefGoogle Scholar
  63. Oosterhout, C., Zijlstra, W.G., Heuven, M.K., Brakefield, P.M. 2000bInbreeding depression and genetic load in laboratory populations of the butterfly Bicyclus anynana Evolution54218225CrossRefGoogle Scholar
  64. Wade, M.J., Shuster, S.M., Stevens, L. 1996Inbreeding: its effect on response to selection for pupal weight and the heritable variance in fitness in the flour beetle, Tribolium castaneum Evolution50723733CrossRefGoogle Scholar
  65. Wang, J. 2000Effects of population structures and selection strategies on the purging of inbreeding depression due to deleterious mutationsGenet. Res. Camb.767586Google Scholar
  66. Wang, J., Hill, W.G., Charlesworth, D., Charlesworth, B. 1999Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rateGenet. Res. Camb.74165178Google Scholar
  67. Whitlock, M.C. 2000Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selectionEvolution5418551861PubMedCrossRefGoogle Scholar
  68. Whitlock, M.C., Phillips, P.C., Wade, M.J. 1993Gene interaction affects the additive genetic variance in subdivided populations with migration and extinctionEvolution4717581769CrossRefGoogle Scholar
  69. Willis, J.H., Orr, H.A. 1993Increased heritable variation following population bottlenecks: the role of dominanceEvolution47949956CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyRice UniversityHoustonUSA
  2. 2.Department of Biological SciencesUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations