Genetica

, Volume 127, Issue 1–3, pp 65–79 | Cite as

Phylogeny of the caniform carnivora: evidence from multiple genes

Article

Abstract

The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past decades, especially for Ailurus fulgens (the red panda). Here, new nuclear sequences from two introns of the β-fibrinogen gene (β-fibrinogen introns 4 and 7) and a complete mitochondrial (mt) gene (ND2) from 17 caniform representatives were explored for their utilities in resolving higher-level relationships in the Caniformia. In addition, two previously available nuclear (IRBP exon 1 and TTR intron 1) data sets were also combined and analyzed simultaneously with the newly obtained sequence data in this study. Combined analyses of four nuclear and one mt genes (4417 bp) recover a branching order in which almost all nodes were strongly supported. The present analyses provide evidence in favor of Ailurus fulgens as the closest taxon to the procyonid-mustelid (i.e., Musteloidea sensu stricto) clade, followed by pinnipeds (i.e., Otariidae and Phocidae), Ursidae (including Ailuropoda melanoleuca), and Canidae, the most basal lineage in the Caniformia. The potential utilities of different genes in the context of caniform phylogeny were also evaluated, with special attention to the previously unexplored β-fibrinogen intron 4 and 7 genes.

Keywords

β-fibrinogen introns Caniformia giant panda mtND2 gene phylogenetic analysis red panda 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res.2533893402PubMedCrossRefGoogle Scholar
  2. Arnason, U., Widegren, B. 1986Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNAMol. Biol. Evol.3356365Google Scholar
  3. Arnason, U., Ledje, C. 1993

    The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies

    Szalay, F.S.Novacek McKenna, M. eds. Mammal PhylogenySpringer-VerlagNY
    Google Scholar
  4. Arnason, U., Adegoke, J.A., Bodin, K., Born, E.W., Esa, Y.B., Gullberg, A., Nilsson, M., Short, R.V., Xu, X., Janke, A. 2002Mammalian mitogenomic relationships and the root of the eutherian treeProc. Natl. Acad. Sci. USA9981518156PubMedCrossRefGoogle Scholar
  5. Barker, F.K. 2004Monophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence dataMol. Phylogenet. Evol.31486504PubMedCrossRefGoogle Scholar
  6. Bininda-Emonds, O.R.P., Gittleman, J.L., Purvis, A. 1999Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia)Biol. Rev.74143175PubMedCrossRefGoogle Scholar
  7. Bremer, K. 1988The limits of amino acid sequence data in angiosperm phylogenetic reconstructionEvolution42795803CrossRefGoogle Scholar
  8. Bremer, K. 1994Branch support and tree stabilityCladistics10295304CrossRefGoogle Scholar
  9. Creer, S., Malhotra, A., Thorpe, R.S. 2003Assessing the phylogenetic utility of four mitochondrial genes and a nuclear intron in the Asian pit viper genus, Trimeresurus: separate, simultaneous, and conditional data combination analysesMol. Biol. Evol.2012401251PubMedCrossRefGoogle Scholar
  10. Delisle, I., Strobeck, C. 2002Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bearsMol. Biol. Evol.19357361PubMedGoogle Scholar
  11. Dragoo, J.W., Honeycutt, R.L. 1997Systematics of mustelid-like carnivoresJ Mamm78426443Google Scholar
  12. Eisenberg, J.F. 1989

    An introduction to the Carnivora

    Gittleman, J.L. eds. Carnivore Behavior, Ecology, and EvolutionCornell University PressIthaca NY19
    Google Scholar
  13. Farris, J.S., Kallersjo, M., Kluge, A.G., Bult, C. 1994Testing significance of congruenceCladistics10315320CrossRefGoogle Scholar
  14. Farris, J.S., Kallersjo, M., Kluge, A.G., Bult, C. 1995Constructing a significance test for incongruenceSyst. Biol.44783791Google Scholar
  15. Felsenstein, J. 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791CrossRefGoogle Scholar
  16. Flynn, J.J., Nedbal, M.A. 1998Phylogeny of the Carnivora (Mammalia): Congruence vs. incompatibility among multiple data setsMol. Phylogenet. Evol.9414426PubMedCrossRefGoogle Scholar
  17. Flynn, J.J., Nedbal, M.A., Dragoo, J.W., Honeycutt, R.L. 2000Whence the red panda?Mol. Phylogenet. Evol.17190199PubMedCrossRefGoogle Scholar
  18. Hills, D.M., Bull, J.J. 1993An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysisSyst. Biol.42182192Google Scholar
  19. Hunt, R.M., Barnes, L.G. 1994Basicranial evidence for ursid affinity of the oldest pinnipedsProc. San Diego Soc. Nat. Hist.295767Google Scholar
  20. Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M. 2001MEGA2: Molecular Evolutionary Genetics Analysis Software. Version 2.1Arizona State UniversityTempe, Arizona, USAGoogle Scholar
  21. Ledje, C., Arnason, U. 1996Phylogenetic analyses of complete cytochrome b genes of the order carnivora with particular emphasis on the caniformiaJ. Mol. Evol.42135144PubMedCrossRefGoogle Scholar
  22. Nowak, R.M. 1999Walker’s Mammals of the World6Johns Hopkins University PressBaltimore, MDGoogle Scholar
  23. Posada, D., Crandall, K.A. 1998Modeltest: testing the model of DNA substitutionBioinformatics14817818PubMedCrossRefGoogle Scholar
  24. Prychitko, T.M., Moore, W.S. 1997The utility of DNA sequences of an intron from the β-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae)Mol. Phylogenet. Evol.8193204PubMedCrossRefGoogle Scholar
  25. Ronquist, F., Huelsenbeck, J.P. 2003MrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics1915721574PubMedCrossRefGoogle Scholar
  26. Sambrook, E., Fritsch, F., Maniatis, T. 1989Molecular ClongingCold Spring Harbor PressCold Spring Harbor, NYGoogle Scholar
  27. Shaffer, H.B., Meylan, P., McKnight, M.L. 1997Tests of turtle phylogeny: molecular, morphological, and paleontological approachesSyst. Biol.46235268PubMedGoogle Scholar
  28. Slattery, J.P., O’Brien, S.J. 1995Molecular phylogeny of the red panda (Ailurus fulgens)J. Hered.86413422PubMedGoogle Scholar
  29. Sorenson, M.D. 1999TreeRot, version 2Boston University PressBoston, MAGoogle Scholar
  30. Springer, M.S., Debry, R.W., Douady, C., Amrine, H.M., Madsen, O., Jong, W.W., Stanhope, M.J. 2001Mitochondrial versus nuclear gene sequences in deep- level mammalian phylogeny reconstructionMol. Biol. Evol.18132143PubMedGoogle Scholar
  31. Stanhope, M.J., Czelusniak, J., Si, J.S., Nickerson, J., Goodman, M. 1992A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophylyMol. Phylogenet. Evol.1148160PubMedCrossRefGoogle Scholar
  32. Swofford, D.L. 2001PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b8Sinauer AssociatesSunderland, MAGoogle Scholar
  33. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res.2448764882CrossRefGoogle Scholar
  34. Vrana, P.B., Milinkovitch, M.C., Powell, J.R., Wheeler, W.C. 1994Higher level relationships of the arctoid Carnivora based on sequence data and ‘total evidence’Mol. Phylogenet. Evol.34758PubMedCrossRefGoogle Scholar
  35. Wozencraft, W.C. 1989

    The phylogeny of the recent carnivore

    Gittleman, J.L. eds. Carnivore Behavior, Ecology, and EvolutionCornell University PressIthaca, NY495535
    Google Scholar
  36. Wyss, A.R., Flynn, J.J. 1993

    A phylogenetic anaysis and definition of the carnivore

    Szalay, F.S.Novacek, M.McKenna, M. eds. Mammal PhylogenySpringer-Verlag NY
    Google Scholar
  37. Xia, X. 2000DAMBE: Data Analysis in Molecular Biology and EvolutionKluwer AcademicBostonGoogle Scholar
  38. Yoder, A.D., Burns, M.M., Zehr, S., Delefosse, T., Veron, G., Goodman, S.M., Flynn, J.J. 2003Single origin of Malagasy carnivore from an African ancestorNature421734737PubMedCrossRefGoogle Scholar
  39. Yu, L., Li, Q.W., Ryder, O.A., Zhang, Y.P. 2004aPhylogeny of the bears (Ursidae) based on nuclear and mitochondrial genesMol. Phylogenet. Evol.32480494CrossRefGoogle Scholar
  40. Yu, L., Li, Q.W., Ryder, O.A., Zhang, Y.P. 2004bPhylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genesMol. Phylogenet. Evol.33694705CrossRefGoogle Scholar
  41. Yu, L., Zhang, Y.P. 2005aPhylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-Fibrinogen intron 7 to carnivoresMol. Phylogenet. Evol.35483495CrossRefGoogle Scholar
  42. Yu, L., Zhang, Y.P. 2005bEvolutionary implications of multiple SINE insertions in an intronic region from diverse mammalsMammal. Genome.16651660CrossRefGoogle Scholar
  43. Zhang, Y.P., Ryder, O.A. 1993Mitochondrial DNA sequence evolution in the ArctoidaeProc. Natl. Acad. Sci. USA9095579561PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology of Domestic Animals, and Cellular and Molecular EvolutionKunming Institute of ZoologyKunmingChina
  2. 2.Laboratory for Conservation and Utilization of Bio-resourceYunnan UniversityKunmingChina

Personalised recommendations