Advertisement

Genetica

, Volume 124, Issue 1, pp 1–10 | Cite as

Repetitive DNA in the automictic fungus Microbotryum violaceum

  • Michael E. HoodEmail author
Article

Abstract

The small genomes of fungi are expected to have little repetitive content other than rDNA genes. Moreover, among asexual or highly selfing lineages, the diversity of repetitive elements is also expected to be very low. However, in the automictic fungus Microbotryum violaceum, a very large proportion of random DNA fragments from the autosomes and the fungal sex chromosomes are repetitive in nature, either as retrotransposon or helicase sequences. Among the retrotransposon sequences, examples were found from each major kind of elements, including copia, gypsy, and non-LTR sequences. The most numerous were copia-like elements, which are believed to be rare in fungi, particularly among basidiomycetes. The many helicase sequences appear to belong to the recently discovered Helitron type of transposable elements. Also, sequences that could not be identified as a known type of gene were also very repetitive within the database of random fragments from M. violaceum. The differentiated pair of fungal sex chromosomes and suppression of recombination may be the major forces determining the highly repetitive content in the small genome of M. violaceum.

Keywords

Anther-smut disease automixis genome size sex chromosome evolution transposable elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonovics, J., J.Y. Abrams, 2004. Intra-tetrad mating and the evolution of linkage relationships. EvolutionGoogle Scholar
  2. Antonovics, J., Hood, M., Partain, J. 2002The ecology and genetics of a host shift: Microbotryum as a model systemAmerican Naturalist160S40S53CrossRefGoogle Scholar
  3. Arkhipova, U., Meselson, M. 2000Transposable elements in sexual and ancient asexual taxaProceeding of the National Academy of Science USA971447314477CrossRefGoogle Scholar
  4. Benson, G. 1999Tandem repeats finder: a program to analyze DNA sequencesNucleic Acids Res27573580CrossRefPubMedGoogle Scholar
  5. Brosius, J. 1999Genomes were forged by massive bombardments with retroelements and retrosequencesGenetica107209238CrossRefPubMedGoogle Scholar
  6. Casacuberta, J.M., Santiago, N. 2003Plant LTR-retrotransposons and MITEs: control of trasposition and impact on the evolution of plant genes and genomesGene311111CrossRefPubMedGoogle Scholar
  7. Charlesworth, B., Langley, C.H. 1989The population genetics of Drosophila transposable elementsAnn. Rev. Genet.23251287CrossRefPubMedGoogle Scholar
  8. Daboussi, M.J. 1997Fungal transposable elements and genome evolutionGenetica100253260CrossRefPubMedGoogle Scholar
  9. Díez, J., Béguiristain, T., Le Tacon, F., Casacuterta, J.M., Tagu, D. 2003Identification of Ty1-copia retrotransposons in three ectomycorrhizal basidiomycetes: evolutionary relationships and use as molecular markersCurr. Genetics433444Google Scholar
  10. Feller, W. 1957An Introduction to Probability Theory and Its Applications2John Wiley and Sons Inc.New YorkGoogle Scholar
  11. Freeman, A.B., Duong, K.K., Shi, T.L., Hughes, C.F., Perlin, M.H. 2002Isolates of Microbotryum violaceum from North American host species are phylogenetically distinct from their European host-derived counterpartsMol. Phyl. Evol.23158170CrossRefGoogle Scholar
  12. Garber, E.D., Ruddat, M. 1994Genetics of Ustilago violacea XXXII. Genetic evidence for transposable elementsTheor. Appl. Genetics89838846Google Scholar
  13. Garber, E.D., Ruddat, M. 1998Genetics of Ustilago violaceaXXXIV. Genetic evidence for a transposable element functioning during mitosis and two transposable elements functioning during meiosis. Int. J. Plant Sci.15910181022Google Scholar
  14. Garber, E.D., Ruddat, M. 2000Genetics of Ustilago violaceaXXXV. Transposition in haploid and diploid sporidia and germinating teliospores. Int. J. Plant Sci.161227231Google Scholar
  15. Garber, E.D., Ruddat, M. 2002Transmission genetics of Microbotryum violaceum (Ustilago violacea): A case historyAdv. Appl. Microbiol.51107127PubMedGoogle Scholar
  16. Goodwin, T.J.D., Poulter, T.M. 2001The diversity of retrotransposons in the yeast Cryptococcus neoformansYeast18865880CrossRefPubMedGoogle Scholar
  17. Gorelick, R. 2003Transposable elements suppress recombination in all meiotic eukaryotes, including automictic ancient asexuals: a reply to Schön and MartensJ. Nat History37903909CrossRefGoogle Scholar
  18. Hood, M.E. 2002Dimorphic mating-type chromosomes in the fungus Microbotryum violaceumGenetics160457461PubMedGoogle Scholar
  19. Hood, M.E., Antonovics, J. 2004Mating within the meiotic tetrad and the maintenance of genomic heterozygosityGenetics16617511759CrossRefPubMedGoogle Scholar
  20. Hood, M.E., Antonovics, J., Heishman, H. 2003Karyotypic similarity identifies multiple host-shifts of a pathogenic fungus in natural populationsInfect. Genetics Evol.2167172CrossRefGoogle Scholar
  21. Hood M.E., Antonovics J., Koskella B. (2004). Shared forces of sex chromosome evolution in haploid-mating and diploid-mating organisms. GeneticsGoogle Scholar
  22. Hurst, G.D.D., Werren, J.H. 2001The role of selfish genetic elements in eukaryotic evolutionNat. Rev. Genetics2597606CrossRefGoogle Scholar
  23. Kapitonov, V.V., Jurka, J. 2001Rolling-circle transposons in eukaryotesProc. Nat. Acad. Sci. USA9887148719CrossRefPubMedGoogle Scholar
  24. Kempken, F., Kück, U. 1998Transposons in filamentous fungi – facts and perspectivesBioEssarys20652659CrossRefGoogle Scholar
  25. Kidwell, M.G. 2002Transposable elements and the evolution of genome size in eukaryotesGenetica1154963CrossRefPubMedGoogle Scholar
  26. Kidwell, M.G., Lisch, D.R. 2001Perspective: Transposable elements, parasitic DNA, and genome evolutionEvolution55124PubMedGoogle Scholar
  27. Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M. 2001MEGA2: molecular evolutionary genetics analysis softwareBioinformatics1712441245CrossRefPubMedGoogle Scholar
  28. Lönnig, W.-E., Saedler, H. 2002Chromosome rearrangements and transposable elementsAnn. Rev. Genetics36389410CrossRefGoogle Scholar
  29. Mannhaupt G., etal. 2003What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequenceNucl. Acids Res.3119441954CrossRefPubMedGoogle Scholar
  30. Morgan, M.T. 2001Transposable element number in mixed mating populationsGenetical Res.77261275CrossRefGoogle Scholar
  31. Nouvel, P. 1994The mammalian genome shaping activity of reverse-transcriptaseGenetica93191201CrossRefPubMedGoogle Scholar
  32. Nuzhdin, S.V., Petrov, D.A. 2003Transposable elements in clonal lineages: lethal hangover from sexBiol. J. Linnean Soc.793341CrossRefGoogle Scholar
  33. Perlin, M.H., Hughes, C., Welch, J., Akkaraju, S., Steinecker, D., Kumar, A., Smith, B., Garr, S., Brown, S., Andom, T. 1997Molecular approaches to differentiate subpopulations or formae speciales of the fungal phytopathogen Microbotryum violaceumInt. J. Plant Sci.158568574CrossRefGoogle Scholar
  34. Perneger, T.V. 1998What’s wrong with Bonferroni adjustmentsBritish Med. J.31612361238Google Scholar
  35. Poulter, R.T.M., Goodwin, T.J.D., Bulter, M.I. 2003Vertebrate helentrons and other novel HelitronsGene313201212CrossRefPubMedGoogle Scholar
  36. Shapiro, J.A. 2002Repetitive DNA, genome system architecture and genome reorganizationRes. Microbiol.153447453CrossRefPubMedGoogle Scholar
  37. Shnyreva, A.V. 2003Transposable elements are the factors involved in various rearrangements and modifications of the fungal genomesRussian J. Genetics39505518Trans. Genetika 39: 621–636CrossRefGoogle Scholar
  38. Sokal, R.R., Rohlf, F.J. 1995Biometry: The Principles and Practice of Statistics in Biological ResearchW.H. Freeman and CompanyNew YorkGoogle Scholar
  39. Wöstemeyer, J., Kreibich, A. 2002Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolutionCurr. Genetics41189198CrossRefGoogle Scholar
  40. Xiong, Y., Eickbush, T.H. 1988Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial intronsMol. Biol. Evol.5675690PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations