, Volume 123, Issue 1–2, pp 191–196 | Cite as

Polyploidy, evolutionary opportunity, and crop adaptation

  • Andrew H. Paterson


The finding that even the smallest of plant genomes has incurred multiple genome-wide chromatin duplication events, some of which may predate the origins of the angiosperms and therefore shape all of flowering plant biology, adds new importance to the molecular analysis of polyploidization/diploidization cycles and their phenotypic consequences. Early clues as to the possible phenotypic consequences of polyploidy derive from recent QTL mapping efforts in a number of diverse crop plants of recent and well-defined polyploid origins. A small sampling examples of the role(s) of polyploidy in conferring crop adaptation from human needs include examples of (1) dosage effects of multiple alleles in autopolyploids, and (2) ‘intergenomic heterosis’ conferring novel traits or transgressive levels of existing traits, associated with merging divergent genomes in a common allopolyploid nucleus. A particularly interesting manifestation of #2 is the evolution of complementary alleles at corresponding (‘homoeologous’) loci in divergent polyploid taxa derived from a common ancestor. Burgeoning genomic data for both botanical models and major crops offer new avenues for investigation of the molecular and phenotypic consequences of polyploidy, promising new insights into the role of this important process in the evolution of botanical diversity.


diversity gene dosage genome duplication QTL transgressive variation 



linkage group


quantitative trait locus


restriction fragment length polymorphism


water use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabidopsis Genome Initiative2000Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature408796815Google Scholar
  2. Anonymous, 1997. Zonal Coordinators Annual Report of All-India Coordinated Cotton Improvement Project.Google Scholar
  3. Blanc, G., Barakat, A., Guyot, R., Cooke, R., Delseny, M. 2000Extensive duplication and reshuffling in the Arabidopsis genomePlant Cell1210931101CrossRefPubMedGoogle Scholar
  4. Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H. 2003Unravelling angiosperm chromosome evolution by phylogenetic analysis of chromosomal duplication eventsNature422433438PubMedGoogle Scholar
  5. Boyer, J. 1982Plant productivity and environmentScience281443448Google Scholar
  6. D’Hont, A., Rao, P.S., Feldmann, P., Grivet, L., Islamfaridi, N., Taylor, P., Glaszmann, J.C. 1995Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridizationTheor. Appl. Genet.91320326Google Scholar
  7. Eckhardt, N. 2001A sense of self: the role of DNA sequence elimination in allopolyploidizationPlant Cell1316991704Google Scholar
  8. Hilu, K.W. 1993Polyploidy and the evolution of domesticated plantsAm. J. Bot.8014941499Google Scholar
  9. Irvine, J.E. 1999Saccharum species as horticultural classesTheor. Appl. Genet.98186194Google Scholar
  10. Jiang, C.X., Wright, R.J., El-Zik, K.M., Paterson, A. H. 1998Polyploid formation created unique avenues for response to selection in Gossypium (cotton)Proc. Natl. Acad. Sci. USA9544194424PubMedGoogle Scholar
  11. Kowalski, S.P., Lan, T.H., Feldmann, K.A., Paterson, A.H. 1994Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene orderGenetics138499510PubMedGoogle Scholar
  12. Martin, W., Gierl, A., Saudler, H. 1989Molecular evidence for pre-Cretaceous angiosperm originsNature3394648Google Scholar
  13. McGrath, J.M., Jancso, M.M., Pichersky, E. 1993Duplicate sequences with a similarity to expressed genes in the genome of Arabidopsis thalianaTheor. Appl. Genet.86880888Google Scholar
  14. Ming, R., Liu, S.C., Moore, P.H., Irvine, J.E., Paterson, A.H. 2001QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcaneGenome Res.1120752084PubMedGoogle Scholar
  15. Niles, G.A., Feaster, C.V. 1984BreedingKohel, R.J.Lewis, C.F. eds. CottonAmerican Society of AgronomyMadison, WI, USA202229Google Scholar
  16. Paterson, A.H., Lin, Y.R., Li, Z.K., Schertz, K.F., Doebley, J.F., Pinson, S.R.M., Liu, S.C., Stansel, J.W., Irvine, J.E. 1995Convergent domestication of cereal crops by independent mutations at corresponding genetic lociScience26917141718PubMedGoogle Scholar
  17. Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., Elsik, C.G., Jiang, C.X., Katsar, C.S., Lan, T.H., Lin, Y.R., Ming, R., Wright, R.J. 2000Comparative genomics of plant chromosomes.Plant Cell1215231539CrossRefPubMedGoogle Scholar
  18. Paterson, A.H., Saranga, Y., Menz, M., Jiang, C.X., Wright, R. 2002QTL Analysis of genotype x environment interactions affecting cotton fiber qualityTheor. Appl. Genet.106384396PubMedGoogle Scholar
  19. Saranga, Y., Flash, I., Yakir, D. 1998Variation in water-use efficiency and its relation to carbon isotope ratio in cottonCrop Sci.38782787CrossRefGoogle Scholar
  20. Saranga, Y., Menz, M., Jiang, C.X., Wright, R.J., Yakir, D., Paterson, A.H. 2001Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditionsGenome Res.1119881995PubMedGoogle Scholar
  21. Vision, T., Brown, D.G., Tanksley, S.D. 2000The origins of genomic duplications in ArabidopsisScience29021142117PubMedGoogle Scholar
  22. Wendel, J.F. 1989New World tetraploid cottons contain Old World cytoplasmProc. Natl. Acad. Sci. USA8641324136PubMedGoogle Scholar
  23. Wendel, J., Schnabel, A., Seelanan, T. 1995Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium)Proc. Natl. Acad. Sci. USA92280284PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Plant Genome Mapping LaboratoryUniversity of GeorgiaAthensUSA

Personalised recommendations