Advertisement

GeoJournal

pp 1–21 | Cite as

Analysis of bi-variate statistical and multi-criteria decision-making models in landslide susceptibility mapping in lower Mandakini Valley, India

  • Habib Ali MirddaEmail author
  • Somnath Bera
  • Masood Ahsan Siddiqui
  • Bhoop Singh
Article
  • 19 Downloads

Abstract

Landslide is recurrent phenomena in the Mandakini valley of Uttarakhand, India. This study concentrates on the analysis of landslide susceptibility mapping using Frequency Ratio (FR) and Analytical Hierarchical Process (AHP) models in the lower Mandakini valley. The models are applied by integrating eleven causative factors and 160 past landslides. Both models are validated and compared using Receiver Operating Characteristics and Seed Cell Area Index method. The validation result shows that the FR model gives better success rate and prediction rate than AHP model. Seed cell index values of high and very high susceptibility classes are more in the case of the FR model than AHP model. Thus, the landslide prediction capability of the FR model is more reliable in the study area. The study will contribute to understand future landslide risk and help in disaster reduction planning in the region.

Keywords

Landslide susceptibility Frequency ratio Analytical hierarchy process Receiver operating characteristics Seed cell area index 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., & Bendaoud, E. A. (2017). Landslide susceptibility mapping using analytic hierarchy process and information value methods along with a highway road section in Constantine, Algeria. Arabian Journal of Geoscience, 10(8), 194.  https://doi.org/10.1007/s12517-017-2980-6.Google Scholar
  2. Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269–277.Google Scholar
  3. Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O. B. (2012). Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171, 12–29.Google Scholar
  4. Casadei, M., Dietrich, W. E., & Miller, N. L. (2003). Testing a model for predicting the time and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28(9), 925–950.Google Scholar
  5. Champatiray, P. K., Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101–111.Google Scholar
  6. Chen, W., Chai, H., Sun, X., Wang, Q., Ding, X., Hong, H. (2016). A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arabian Journal of Geosciences. http://doi.org/10.1007/s12517-015-2150-7.Google Scholar
  7. Chen, W., Pourghasemi, H. R., & Zhao, Z. (2017a). A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 32(4), 367–385.  https://doi.org/10.1080/10106049.2016.1140824.Google Scholar
  8. Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., et al. (2017b). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147–160.Google Scholar
  9. Choubey, V. M., Bist, K. K., Saini, N. N., & Ramola, R. R. (1999). Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India. Applied Radiation and Isotopes, 51(5), 587–592.Google Scholar
  10. Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2007). GIS-based weights-of-evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324.Google Scholar
  11. Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3–4), 213–228.Google Scholar
  12. Dehnavi, A., Aghdam, I. N., Pradhan, B., & Varzandeh, M. H. M. (2015). A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, 135, 122–148.Google Scholar
  13. Demir, G., Aytekin, M., Akgun, A., Ikizler, S. B., & Tatar, O. (2013). A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards, 65(3), 1481–1506.Google Scholar
  14. Disaster Mitigation and Management Centre. (2014). Geological investigations in Rudraprayag district with special reference to mass instability (pp. 24–51). Dehradun: Government of Uttarakhand.Google Scholar
  15. Dou, J., Yanagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.  https://doi.org/10.1007/s11069-015-1799-2.Google Scholar
  16. Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic Press.Google Scholar
  17. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for old problem. Earth-Science Review, 112(1–2), 42–66.Google Scholar
  18. Huang, J., Zhou, Q., & Wang, F. (2015). Mapping the landslide susceptibility in Lantau Island, Hong Kong, by frequency ratio and logistic regression model. Annals of GIS, 21(3), 191–208.Google Scholar
  19. Jebur, M. N., Pradhan, B., Shafri, H. Z. M., Yusoff, Z. M., & Tehrany, M. S. (2015). An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geoscientific Model Development, 8(3), 881–891.Google Scholar
  20. Kannan, M., Saranathan, E., & Anabalagan, R. (2012a). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian Journal of Geosciences, 6(8), 2901–2913.  https://doi.org/10.1007/s12517-012-0587-5.Google Scholar
  21. Kannan, M., Saranathan, E., & Anbalagan, R. (2012b). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian Journal of Geoscience, 6(8), 2901–2913.Google Scholar
  22. Khattri, K. N., Chander, R., Gaur, V. K., Sarkar, I., & Kumar, S. (1989). New seismological results on the tectonics of the Garhwal Himalaya. Proceedings of the Indian Academy of Sciences: Earth and Planetary Science, 98(1), 91–109.Google Scholar
  23. Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., & Revhaug, I. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, 744–755.Google Scholar
  24. Kienholz, H., Schneider, G., Bichsel, M., Grunder, M., & Mool, P. (1984). Mapping of mountain hazards and slope stability. Mountain Research and Development, 4(3), 247–266.Google Scholar
  25. Kumar, R., & Anbalagan, R. (2014). Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. Journal of Earth System Science, 124(2), 431–448.Google Scholar
  26. Kumar, R., & Anbalagan, R. (2016). Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. Journal of the Geological Society of India, 87(3), 271–286.Google Scholar
  27. Kumar, D., Thakur, M., Dubey, S. C., & Shukla, D. P. (2017). Landslide susceptibility mapping and prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology, 29, 115–125.Google Scholar
  28. Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477–1491.Google Scholar
  29. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.Google Scholar
  30. Mancini, F., Ceppi, C., & Rtrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10, 1851–1864.  https://doi.org/10.5194/nhess-10-1851-2010.Google Scholar
  31. Martha, T. R., Roy, P., Govindharaj, K. B., Kumar, K. V., Diwakar, P., & Dadhwal, V. (2015). Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, India. Landslides, 12(1), 135–146.Google Scholar
  32. Mathew, J., Jha, V. K., & Rawat, G. S. (2007). Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5), 628–638.Google Scholar
  33. Naithani, A. K., Prasad, C., Bisht, M. P. S., & Kumari, G. (1997). Landslide zonation and geo-environmental appraisal along main central thrust zone in Mandakini valley, Garhwal Himalaya, India. Himalayan Geology, 18, 135–143.Google Scholar
  34. National Disaster Management Authority. (2007). National disaster management guidelines: Preparation of state disaster management plans (pp. 1–5). New Delhi: Government of India.Google Scholar
  35. Pandey, V. K., & Sharma, M. C. (2017). Probabilistic landslide susceptibility mapping along Tipri to Ghuttu highway corridor, Garhwal Himalaya (India). Remote Sensing Applications: Society and Environment, 8, 1–11.  https://doi.org/10.1016/j.rsase.2017.07.007.Google Scholar
  36. Pareek, N., Sharma, M. L., Arora, M. K., & Pal, S. (2013). Inclusion of earthquake strong ground motion in a geographic information system-based landslide susceptibility zonation in Garhwal Himalayas. Natural Hazards, 65(1), 739–765.Google Scholar
  37. Parkash, S. (2015). Some socio-economically significant landslides in Uttarakhand Himalaya: Events, consequences and lesson learnt. In R. Shaw & H. K. Nibanupudi (Eds.), Mountain hazards and disaster risk reduction (pp. 211–232). Tokyo: Springer.Google Scholar
  38. Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 128(1–2), 255–273.  https://doi.org/10.1007/s00704-015-1702-9.Google Scholar
  39. Pham, B. T., Bui, D. T., Prakash, I., & Dholakia, M. A. (2016). Evaluation of predictive ability of support vector machines and naive bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. Journal of Geomatics, 10(1), 71–79.Google Scholar
  40. Pham, B. T., Jaafari, A., Prakash, I., & Bui, D. T. (2018a). A novel hybrid intelligent model of support vector machines and the multi-boost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment.  https://doi.org/10.1007/s10064-018-1281-y.Google Scholar
  41. Pham, B. T., & Prakash, I. (2018). Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India. Indian Journal of Science and Technology, 11(12), 1–10.Google Scholar
  42. Pham, B. T., Prakash, I., & Bui, D. T. (2017a). Spatial prediction of landslides using hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology, 303, 256–270.  https://doi.org/10.1016/j.geomorph.2017.12.008.Google Scholar
  43. Pham, B. T., Prakash, I., Jaafari, A., & Bui, D. T. (2018b). Spatial prediction of rainfall-induced landslides using aggregating one-dependence estimators classifier. Journal of the Indian Society of Remote Sensing, 46(9), 1457–1470.  https://doi.org/10.1007/s12524-018-0791-1.Google Scholar
  44. Pham, B. T., Shirzadi, A., Bui, D. T., Prakash, I., & Dholakia, M. A. (2017b). Hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 149, 12–63.  https://doi.org/10.1016/j.catena.2016.09.007.Google Scholar
  45. Pham, B. T., Son, L. H., Hoang, T.-A., Nguyen, D.-M., & Bui, D. T. (2018c). Prediction of shear strength of soft soil using machine learning methods. Catena, 166, 181–191.  https://doi.org/10.1016/j.catena.2018.04.004.Google Scholar
  46. Pham, B. T., Tien, B. D., & Prakash, I. (2018d). Bagging based support vector machines for spatial prediction of landslides. Environmental Earth Sciences, 77(4), 146.  https://doi.org/10.1007/s12665-018-7268-y.Google Scholar
  47. Poonam, C., Rana, N., Champati Ray, P. K., Bisht, P., Bagri, D. S., Wasson, R. J., et al. (2016). Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (central Himalaya), for disaster governance using the weights of evidence method. Geomorphology, 284, 41–52.Google Scholar
  48. Pourghasemi, H. R., & Rossi, M. (2017). Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology, 130(1–2), 609–633.  https://doi.org/10.1007/s00704-016-1919-2.Google Scholar
  49. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, sup-port vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computer Geoscience, 51, 350–365.Google Scholar
  50. Pradhan, A. M. S., & Kim, Y.-T. (2017). Landslide susceptibility mapping of Phewa catchment using multilayer perceptron artificial neural network. Nepal Journal of Environmental Science, 4, 1–9.Google Scholar
  51. Ramesh, V., & Anbazhagan, S. (2015). Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environmental Earth Sciences, 73(12), 8009–8021.Google Scholar
  52. Rawat, M. S., Uniya, D. P., Dobha, R., Joshi, V., Rawat, B. S., Bartwal, A., et al. (2015). Study of landslide hazard zonation in Mandakini Valley, Rudraprayag district, Uttarakhand using remote sensing and GIS. Current Science, 109(1), 158–170.Google Scholar
  53. Ray, Y. Y., & Srivastava, P. P. (2010). Widespread aggradation in the mountainous catchment of the Alaknanda-Ganga river system: Timescales and implications to Hinterland–foreland relationships. Quaternary Science Review, 29(17), 2238–2260.Google Scholar
  54. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.Google Scholar
  55. Saaty, T. L. (1980). The analytical hierarchy process (p. 350). New York: McGraw Hill.Google Scholar
  56. Saha, A. K., Gupta, R. P., Sarker, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation—With a case study in the Himalayas. Landslides, 2(1), 61–69.  https://doi.org/10.1007/s10346-004-0039-8.Google Scholar
  57. Sahana, M., & Sajjad, H. (2017). Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India. Journal of Mountain Science, 14(11), 2150–2167.  https://doi.org/10.1007/s11629-017-4404-1.Google Scholar
  58. Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3–4), 108–121.Google Scholar
  59. Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56(2), 255–267.Google Scholar
  60. Satendra, D. R., Gupta, A. K., Naik, V. K., Roy, T. K. S., Sharma, A. K., & Dwivedi, M. (2015). Uttarakhand disaster 2013 (pp. 3–7). New Delhi: National Institute of Disaster Management.Google Scholar
  61. Shukla, D. D., Dubey, C. C., Ningreichon, A. A., Singh, R. R., Mishra, B. B., & Singh, S. S. (2014). GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation. Natural Hazards, 71(3), 1433–1452.Google Scholar
  62. Soria, D., Garibaldi, J. M., Ambrogi, F., Biganzoli, E. M., & Ellis, I. O. (2011). A non-parametric version of the naive Bayes classifier. Knowledge-Based Systems, 24(6), 775–784.Google Scholar
  63. Suzen, L. M., & Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environmental Geology, 45(5), 665–679.  https://doi.org/10.1007/s00254-003-0917-8.Google Scholar
  64. Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G. (2015). Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119–136.  https://doi.org/10.1016/j.geomorph.2015.06.00.Google Scholar
  65. Valdiya, K. S. (1980). Geology of Kumaun Lesser Himalaya (pp. 1–291). Dehradun: Wadia Institute of Himalayan Geology.Google Scholar
  66. van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult ? Bulletin of Engineering Geology and the Environment, 65(2), 167–184.Google Scholar
  67. Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice (pp. 1–63). Paris: UNESCO.Google Scholar
  68. Vijith, H., Rejith, P. G., & Madhu, G. (2009). Using InfoVal method and GIS techniques for the spatial modeling of landslide susceptibility in the upper catchment of river Meenachil in Kerala. Journal of Indian Society of Remote Sensing, 37(2), 241–250.Google Scholar
  69. Wieczorek, G. F. (1984). Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bulletin Association Engineering Geology, 21(3), 337–342.Google Scholar
  70. Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287.  https://doi.org/10.1016/j.catena.2011.01.014.Google Scholar
  71. Yilmaz, I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Science, 61(4), 821–836.Google Scholar
  72. Youssef, A. M., Al-Kathery, M., & Pradhan, B. (2015). Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geoscience Journal, 19(1), 113–134.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Habib Ali Mirdda
    • 1
    Email author
  • Somnath Bera
    • 2
  • Masood Ahsan Siddiqui
    • 1
  • Bhoop Singh
    • 3
  1. 1.Department of GeographyJamia Millia IslamiaNew DelhiIndia
  2. 2.Centre for GeoinformaticsTata Institute of Social Sciences (TISS)MumbaiIndia
  3. 3.Department of Science and TechnologyNatural Resource Data Management SystemNew DelhiIndia

Personalised recommendations