, Volume 83, Issue 1, pp 153–168 | Cite as

Geography and postgenomics: how space and place are the new DNA

  • J. Anthony StallinsEmail author
  • Derek M. Law
  • Sophia A. Strosberg
  • Jarius J. Rossi


For many geographers, postgenomics is a relatively new perspective on biological causality. It is a non-dualistic way to conceptualize DNA, genes and environment. It also presents an opportunity for a broad critical engagement with biology through geography’s insights into socionature and the fallacies of spatial inference. In postgenomics, mapping of the spatial and temporal contexts and circumstances surrounding DNA, rather than DNA sequence alone, has become prioritized. Consequently, scientific and economic value in postgenomics accrues through the enclosure and mapping of the ‘omes’. These include the more familiar epigenome and microbiome, but also the interactome, the phenome, and the exposome among many others. The omes represent the cartographic translation of biological spatialities that modify the outcomes of DNA sequence from within as well as from outside of human bodies. In this article, we show how postgenomics leverages this omic ontologicalization of space and puts it to productive use. Drawing upon recent studies of the human microbiome, we illustrate how problematic geographies of difference arise through the way this omic mapping unfolds.


Postgenomics Geography Cartography DNA Microbiome 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ackerman, S. L., Darling, K. W., Lee, S. S.-J., Hiatt, R. A., & Shim, J. K. (2016). Accounting for complexity: Gene–environment interaction research and the moral economy of quantification. Science, Technology and Human Values, 41(2), 194–218.CrossRefGoogle Scholar
  2. Baker, M. (2013). Big biology: The ‘omes’ puzzle. Nature, 494(7438), 416–419.CrossRefGoogle Scholar
  3. Beauchamp, J. P. (2016). Genetic evidence for natural selection in humans in the contemporary United States. Proceedings of the National Academy of Sciences, 113(28), 7774–7779. doi: 10.1073/pnas.1600398113.CrossRefGoogle Scholar
  4. Birch, K. (2009). The knowledge-space dynamic in the UK bioeconomy. Area, 41(3), 273–284.CrossRefGoogle Scholar
  5. Birch, K., & Tyfield, D. (2013). Theorizing the bioeconomy biovalue, biocapital, bioeconomics or…what? Science, Technology and Human Values, 38(3), 299–327.CrossRefGoogle Scholar
  6. Blaser, M. J., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Estrada, I., et al. (2013). Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 7(1), 85–95.CrossRefGoogle Scholar
  7. Borrell, B. (2011). Epidemiology: Every bite you take. Nature, 470(7334), 320–322.CrossRefGoogle Scholar
  8. Braun, B. (2007). Biopolitics and the molecularization of life. Cultural Geographies, 14(1), 6–28.CrossRefGoogle Scholar
  9. Braun, B. (2008). Environmental issues: Inventive life. Progress in Human Geography, 32(5), 667–679.CrossRefGoogle Scholar
  10. Braun, B. (2014). New materialisms and neoliberal natures. Antipode, 47(1), 1–14.CrossRefGoogle Scholar
  11. Bridge, G. (2008). Environmental economic geography: A sympathetic critique. Geoforum, 39(1), 76–81.CrossRefGoogle Scholar
  12. Callaway, E. (2015). Microbiome privacy risk. Nature, 521(7551), 136.CrossRefGoogle Scholar
  13. Calvert, J. (2008). The commodification of emergence: Systems biology, synthetic biology and intellectual property. Biosocieties, 3(4), 383–398.CrossRefGoogle Scholar
  14. Castree, N. (2003). Commodifying what nature? Progress in Human Geography, 27(3), 273–297.CrossRefGoogle Scholar
  15. Castree, N. (2009). Who’s afraid of Charles Darwin? Geoforum, 40(6), 941–944.CrossRefGoogle Scholar
  16. Clark, N. (2011). Inhuman nature: Sociable life on a dynamic planet. London: Sage Publications.Google Scholar
  17. Clemente, J. C., Pehrsson, E. C., Blaser, M. J., Sandhu, K., Gao, Z., Wang, B., et al. (2015). The microbiome of uncontacted Amerindians. Science Advances, 1(3), e1500183.CrossRefGoogle Scholar
  18. Cooper, M. (2008). Life as surplus: Biotechnology and capitalism in the neoliberal era. Seattle: University of Washington Press.Google Scholar
  19. Cooper, M. (2012). The pharmacology of distributed experiment—User-generated drug innovation. Body & Society, 18(3–4), 18–43.CrossRefGoogle Scholar
  20. Correia, D. (2013). F** k Jared diamond. Capitalism Nature Socialism, 24(4), 1–6.CrossRefGoogle Scholar
  21. Darling, K. W., Ackerman, S. L., Hiatt, R. H., Lee, S. S. J., & Shim, J. K. (2016). Enacting the molecular imperative: How gene–environment interaction research links bodies and environments in the post-genomic age. Social Science and Medicine, 155, 51–60.CrossRefGoogle Scholar
  22. David, L. A., Materna, A. C., Friedman, J., Campos-Baptista, M. I., Blackburn, M. C., Perrotta, A., et al. (2014). Host lifestyle affects human microbiota on daily timescales. Genome Biology, 15(7), R89.CrossRefGoogle Scholar
  23. Davies, G. (2013). Arguably big biology: Sociology, spatiality and the knockout mouse project. Biosocieties, 8(4), 417–431.CrossRefGoogle Scholar
  24. Davies, G., Frow, E., & Leonelli, S. (2013). Bigger, faster, better? Rhetorics and practices of large-scale research in contemporary bioscience. Biosocieties, 8(4), 386–396.CrossRefGoogle Scholar
  25. de Vrieze, J. (2013). The promise of poop. Science, 341(6149), 954–957.CrossRefGoogle Scholar
  26. de Vrieze, J. (2014). Gut instinct. Science, 343(6168), 241–243.CrossRefGoogle Scholar
  27. Duster, T. (2015). A post-genomic surprise. The molecular reinscription of race in science, law and medicine. The British Journal of Sociology, 66(1), 1–27.CrossRefGoogle Scholar
  28. Eades, G. L. (2012). Determining environmental determinism. Progress in Human Geography, 36(3), 423–427.CrossRefGoogle Scholar
  29. Eisen, J. (2012). Badomics words and the power and peril of the ome-meme. GigaScience, 1(1), 6.CrossRefGoogle Scholar
  30. Ettinger, G., Burton, J. P., & Reid, G. (2013). If microbial ecosystem therapy can change your life, what’s the problem? BioEssays, 35(6), 508–512.CrossRefGoogle Scholar
  31. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, 102(30), 10604–10609.CrossRefGoogle Scholar
  32. Franklin, S. (2014). Analogic return: The reproductive life of conceptuality. Theory, Culture & Society, 31(2–3), 243–261.CrossRefGoogle Scholar
  33. Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J., et al. (2015). Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences, 112(22), 2930–2938.CrossRefGoogle Scholar
  34. Fujimura, J. H. (2005). Postgenomic futures: Translations across the machine-nature border in systems biology. New Genetics and Society, 24(2), 195–225.CrossRefGoogle Scholar
  35. Gewin, V. (2012). The sequencing machine. Nature, 487(7406), 156–158.CrossRefGoogle Scholar
  36. Gillings, M. R., & Stokes, H. W. (2012). Are humans increasing bacterial evolvability? Trends in Ecology & Evolution, 27(6), 346–352.CrossRefGoogle Scholar
  37. Goldman, A. D., & Landweber, L. F. (2016). What is a genome? PLoS Genetics, 12(7), e1006181.CrossRefGoogle Scholar
  38. Goodchild, M. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  39. Gravlee, C. C. (2009). How race becomes biology: Embodiment of social inequality. American Journal of Physical Anthropology, 139(1), 47–57.CrossRefGoogle Scholar
  40. Greenbaum, D., Luscombe, N. M., Jansen, R., Qian, J., & Gerstein, M. (2001). Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Research, 11(9), 1463–1468.CrossRefGoogle Scholar
  41. Griffiths, P. E., & Stotz, K. (2006). Genes in the postgenomic era. Theoretical Medicine and Bioethics, 27(6), 499–521.CrossRefGoogle Scholar
  42. Guthman, J. (2015). Binging and purging: Agrofood capitalism and the body as socioecological fix. Environment and Planning A, 47(12), 2522–2536.CrossRefGoogle Scholar
  43. Guthman, J., & Mansfield, B. (2012). The implications of environmental epigenetics: A new direction for geographic inquiry on health, space, and nature-society relations. Progress in Human Geography, 37(4), 486–504.CrossRefGoogle Scholar
  44. Hall, E. (2003). Reading maps of the genes: Interpreting the spatiality of genetic knowledge. Health & Place, 9(2), 151–161.CrossRefGoogle Scholar
  45. Haraway, D. J. (1997). Modest witness at second millennium: Female man meets oncomouse: Feminism and technoscience. London: Routledge.Google Scholar
  46. Harvey, D. (1996). Justice, nature, and the geography of difference. Cambridge: Blackwell Publishers.Google Scholar
  47. Harvey, D. (2001). Globalization and the spatial fix. Geographische Revue, 2(3), 23–31.Google Scholar
  48. Hawkins, A. K., & O’Doherty, K. C. (2011). Who owns your poop? Insights regarding the intersection of human microbiome research and the ELSI aspects of biobanking and related studies. BMC Medical Genomics, 4(1), 1.CrossRefGoogle Scholar
  49. Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C., & Moyzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20753–20758.CrossRefGoogle Scholar
  50. Hinchliffe, S., & Lavau, S. (2013). Differentiated circuits: The ecologies of knowing and securing life. Environment and Planning D-Society & Space, 31(2), 259–274.CrossRefGoogle Scholar
  51. Hird, M. J. (2010). Meeting with the microcosmos. Environment and Planning D: Society and Space, 28(1), 36–39.CrossRefGoogle Scholar
  52. Hird, M. (2017). Burial and resurrection in the Anthropocene: Infrastructures of waste. In P. Harvey, C. B. Jensen, & A. Morita (Eds.), Infrastructures and social complexity a companion. Oxford: Routledge.Google Scholar
  53. Holmes, C., Carlson, S. M., McDonald, F., Jones, M., & Graham, J. (2016). Exploring the post-genomic world: Differing explanatory and manipulatory functions of post-genomic sciences. New Genetics and Society, 35(1), 49–68.CrossRefGoogle Scholar
  54. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., et al. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.CrossRefGoogle Scholar
  55. Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.Google Scholar
  56. Jacquez, G. M., Sabel, C. E., & Shi, C. (2015). Genetic GIScience: Toward a place-based synthesis of the genome, exposome, and behavome. Annals of the Association of American Geographers, 105(3), 454–472.CrossRefGoogle Scholar
  57. Kaiser, J. (2012). Genetic influences on disease remain hidden. Science, 338(6110), 1016–1017.CrossRefGoogle Scholar
  58. Kell, D. B., & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays, 26(1), 99–105.CrossRefGoogle Scholar
  59. Keller, E. F. (2010). The mirage of a space between nature and nurture. Durham: Duke University Press.CrossRefGoogle Scholar
  60. Kitchin, R., & Dodge, M. (2007). Rethinking maps. Progress in Human Geography, 31(3), 331–344.CrossRefGoogle Scholar
  61. Kuzawa, C. W., & Sweet, E. (2009). Epigenetics and the embodiment of race: Developmental origins of US racial disparities in cardiovascular health. American Journal of Human Biology, 21(1), 2–15.CrossRefGoogle Scholar
  62. Labban, M. (2014). Deterritorializing extraction: Bioaccumulation and the planetary mine. Annals of the Association of American Geographers, 104(3), 560–576.CrossRefGoogle Scholar
  63. Landecker, H. (2011). Food as exposure: Nutritional epigenetics and the new metabolism. Biosocieties, 6(2), 167–194.CrossRefGoogle Scholar
  64. Landecker, H., & Panofsky, A. (2013). From social structure to gene regulation, and back: A critical introduction to environmental epigenetics for sociology. Annual Review of Sociology, 39, 333–357.CrossRefGoogle Scholar
  65. Lederberg, J., & Mccray, A. (2001). Ome sweet omics—A genealogical treasury of words. The Scientist, 17(7), 8.Google Scholar
  66. Leonelli, S. (2014a). What difference does quantity make? On the epistemology of Big Data in biology. Big Data & Society, 1(1), 2053951714534395.CrossRefGoogle Scholar
  67. Leonelli, S. (2014b). Data interpretation in the digital age. Perspectives on Science, 22(3), 397–417.CrossRefGoogle Scholar
  68. Leonelli, S., Diehl, A. D., Christie, K. R., Harris, M. A., & Lomax, J. (2011). How the gene ontology evolves. BMC Bioinformatics, 12(1), 325.CrossRefGoogle Scholar
  69. Levin, N. (2014a). What’s being translated in translational research? Making and making sense of data between the laboratory and the clinic. Technoscienza: Italian Journal of Science & Technology Studies, 5(1), 91–114.Google Scholar
  70. Levin, N. (2014b). Making up “persons” in personalized medicine with metabolomics. Somatosphere. Accessed 17 March 2015.
  71. Levin, N. (2014c). Multivariate statistics and the enactment of metabolic complexity. Social Studies of Science, 44(4), 555–578.CrossRefGoogle Scholar
  72. Levins, R., & Lewontin, R. (1985). The dialectical biologist. Cambridge: Harvard University Press.Google Scholar
  73. Lewis, J. N. (2012). Matchmaking mechanisms: Collaborative arrangements in proteomics and bioinformatics. In J. N. Parker, B. Penders, & N. Vermeulen (Eds.), Collaboration in the new life sciences (pp. 180–199). Farnham: Ashgate Publishing.Google Scholar
  74. Lezaun, J. (2013). The escalating politics of ‘Big Biology’. Biosocieties, 8(4), 480–485.CrossRefGoogle Scholar
  75. Lippman, A. (1992). Led (astray) by genetic maps: The cartography of the human genome and health care. Social Science and Medicine, 35(12), 1469–1476.CrossRefGoogle Scholar
  76. Lock, M. (2015). Comprehending the body in the era of the epigenome. Current Anthropology, 56(2), 151–177.CrossRefGoogle Scholar
  77. Lorimer, J. (2016). Gut buddies: Multispecies studies and the microbiome. Environmental Humanities, 8(1), 57–76.CrossRefGoogle Scholar
  78. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.CrossRefGoogle Scholar
  79. Mansfield, B. (2012a). Environmental health as biosecurity: “Seafood choices,” risk, and the pregnant woman as threshold. Annals of the Association of American Geographers, 102(5), 969–976.CrossRefGoogle Scholar
  80. Mansfield, B. (2012b). Race and the new epigenetic biopolitics of environmental health. BioSocieties, 7(4), 352–372.CrossRefGoogle Scholar
  81. Mansfield, B., & Guthman, J. (2014). Epigenetic life: Biological plasticity, abnormality, and new configurations of race and reproduction. Cultural Geographies, 22(1), 3–20.CrossRefGoogle Scholar
  82. Massey, D. (2005). For space. London: Sage Publications.Google Scholar
  83. McAfee, K. (2003). Neoliberalism on the molecular scale. Economic and genetic reductionism in biotechnology battles. Geoforum, 34(2), 203–219.CrossRefGoogle Scholar
  84. McDonald, D., Vazquez-Baeza, Y., Walters, W. A., Caporaso, J. G., & Knight, R. (2013). From molecules to dynamic biological communities. Biology and Philosophy, 28(2), 241–259.CrossRefGoogle Scholar
  85. McGuinness, D., McGlynn, L. M., Johnson, P. C., MacIntyre, A., Batty, D. G., Burns, H., et al. (2012). Socio-economic status is associated with epigenetic differences in the pSoBid cohort. International Journal of Epidemiology, 41(1), 151–160.CrossRefGoogle Scholar
  86. Meloni, M. (2013). Biology without biologism: Social theory in a postgenomic age. Sociology, 48(4), 731–746.CrossRefGoogle Scholar
  87. Meloni, M. (2015). Epigenetics for the social sciences: Justice, embodiment, and inheritance in the postgenomic age. New Genetics and Society, 34(2), 125–151.CrossRefGoogle Scholar
  88. Millar, S. W., & Mitchell, D. (2015). The tight dialectic: The anthropocene and the capitalist production of nature. Antipode. doi: 10.1111/anti.12188.Google Scholar
  89. Morange, M. (2002). The relations between genetics and epigenetics. Annals of the New York Academy of Sciences, 981(1), 50–60.CrossRefGoogle Scholar
  90. Nash, C. (2012). Genetics, race, and relatedness: Human mobility and human diversity in the genographic project. Annals of the Association of American Geographers, 102(3), 667–684.CrossRefGoogle Scholar
  91. Nesse, R. M., Bergstrom, C. T., Ellison, P. T., Flier, J. S., Gluckman, P., Govindaraju, D. R., et al. (2010). Making evolutionary biology a basic science for medicine. Proceedings of the National Academy of Sciences of the United States of America, 1079(Suppl 1), 1800–1807.CrossRefGoogle Scholar
  92. Niewöhner, J. (2011). Epigenetics: Embedded bodies and the molecularisation of biography and milieu. Biosocieties, 6(3), 279–298.CrossRefGoogle Scholar
  93. Niewöhner, J. (2015). Epigenetics: Localizing biology through co-laboration. New Genetics and Society, 34(2), 219–242.CrossRefGoogle Scholar
  94. O’Sullivan, D., & Manson, S. M. (2015). Do physicists have geography envy? And what can geographers learn from it? Annals of the Association of American Geographers, 105(4), 704–722.CrossRefGoogle Scholar
  95. Obregon-Tito, A. J. (2013). Metagenomics and social inclusion in Peru. Norman: University of Oklahoma.Google Scholar
  96. O’Malley, M. A., Calvert, J., & Dupre, J. (2007). The study of socioethical issues in systems biology. American Journal of Bioethics, 7(4), 67–78.CrossRefGoogle Scholar
  97. Oyama, S. (2000). Evolution’s eye: A systems view of the biology-culture divide. Durham: Duke University Press.CrossRefGoogle Scholar
  98. Parker, W., Perkins, S. E., Harker, M., & Muehlenbein, M. P. (2012). A prescription for clinical immunology: The pills are available and ready for testing. A review. Current Medical Research and Opinion, 28(7), 1193–1202.CrossRefGoogle Scholar
  99. Parry, B. (2004). Trading the genome: Investigating the commodification of bio-information. New York: Columbia University Press.CrossRefGoogle Scholar
  100. Pavlopoulos, G. A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright, A. J., & Iliopoulos, I. (2015). Visualizing genome and systems biology: Technologies, tools, implementation techniques and trends, past, present and future. GigaScience, 4(1), 1–27.CrossRefGoogle Scholar
  101. Paxson, H., & Helmreich, S. (2013). The perils and promises of microbial abundance: Novel natures and model ecosystems, from artisanal cheese to alien seas. Social Studies of Science, 44(2), 165–193.CrossRefGoogle Scholar
  102. Pennisi, E. (2016). Tracking how humans evolve in real time. Science, 352(6288), 876–877.CrossRefGoogle Scholar
  103. Pickersgill, M., Niewohner, J., Muller, R., Martin, P., & Cunningham-Burley, S. (2013). Mapping the new molecular landscape: Social dimensions of epigenetics. New Genetics and Society, 32(4), 429–447.CrossRefGoogle Scholar
  104. Pilpel, Y., & Rechavi, O. (2015). The Lamarckian chicken and the Darwinian egg. Biology Direct, 10(1), 1.CrossRefGoogle Scholar
  105. Pollan, M. (2013). Say hello to the 100 trillion bacteria that make up your microbiome. The New York Times, May 15.Google Scholar
  106. Radcliffe, S. A., Watson, E. E., Simmons, I., Fernández-Armesto, F., & Sluyter, A. (2010). Environmentalist thinking and/in geography. Progress in Human Geography, 34(1), 98–116.CrossRefGoogle Scholar
  107. Rajan, S. K. (2006). Biocapital: The constitution of postgenomic life. Durham, NC: Duke University Press.CrossRefGoogle Scholar
  108. Rajan, K. S. (2013). Questions of critique for big biology: Conjuncture, agency and the global postcolonial. Biosocieties, 8(4), 486–490.CrossRefGoogle Scholar
  109. Rajan, K. S., & Leonelli, S. (2013). Introduction: biomedical trans-actions, postgenomics, and knowledge/value. Public Culture, 25(3), 463–475.CrossRefGoogle Scholar
  110. Relton, C. L., & Smith, G. D. (2012). Is epidemiology ready for epigenetics? International Journal of Epidemiology, 41(1), 5–9.CrossRefGoogle Scholar
  111. Rhodes, R., Gligorov, N., & Schwab, A. P. (2013). The human microbiome: Ethical, legal and social concerns. New York: Oxford University Press.Google Scholar
  112. Richardson, S. S., & Stevens, H. (2015). Postgenomics: Perspectives on biology after the genome. Durham: Duke University Press.CrossRefGoogle Scholar
  113. Richardson, D. B., Volkow, N. D., Kwan, M. P., Kaplan, R. M., Goodchild, M. F., & Croyle, R. T. (2013). Spatial turn in health research. Science, 339(6126), 1390–1392.CrossRefGoogle Scholar
  114. Robertson, M. (2011). Measurement and alienation: Making a world of ecosystem services. Transactions of the Institute of British Geographers, 37(3), 386–401.CrossRefGoogle Scholar
  115. Rook, G. A. W., Raison, C. L., & Lowry, C. A. (2014). Microbial “old friends”, immunoregulation and socio-economic status. Clinical and Experimental Immunology, 177(1), 1–12.CrossRefGoogle Scholar
  116. Rose, H., & Rose, S. P. R. (2012). Genes, cells, and brains: The promethean promises of the new biology. London: Verso.Google Scholar
  117. Saldanha, A. (2006). Reontologising race: The machinic geography of phenotype. Environment and Planning D, 24(1), 9–24.CrossRefGoogle Scholar
  118. Santos, R. V., da Silva, G. O., & Gibbon, S. (2015). Pharmacogenomics, human genetic diversity and the incorporation and rejection of color/race in Brazil. Biosocieties., 10(1), 48–69.CrossRefGoogle Scholar
  119. Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A., et al. (2013). Genomic variation landscape of the human gut microbiome. Nature, 493(7430), 45–50.CrossRefGoogle Scholar
  120. Schuurman, N., & Leszczynski, A. (2008). Ontologies for Bioinformatics. Bioinformatics and Biology Insights, 2, 187–200.CrossRefGoogle Scholar
  121. Sevilla-Buitrago, A. (2015). Capitalist formations of enclosure: Space and the extinction of the commons. Antipode. doi: 10.1111/anti.12143.Google Scholar
  122. Shapiro, J. A. (2009). Revisiting the central dogma in the 21st century. Annals of the New York Academy of Sciences, 1178(1), 6–28.CrossRefGoogle Scholar
  123. Shaw, I. G. R., Robbins, P. F., & Jones, J. P., III. (2010). A bug’s life and the spatial ontologies of mosquito management. Annals of the Association of American Geographers, 100(2), 373–392.CrossRefGoogle Scholar
  124. Shim, J. K., Darling, K. W., Lappe, M. D., Thomson, L. K., Lee, S. S.-J., Hiatt, R. A., et al. (2014). Homogeneity and heterogeneity as situational properties: Producing-and moving beyond?—Race in post-genomic science. Social Studies of Science, 44(4), 579–599.CrossRefGoogle Scholar
  125. Slashinski, M. J., McCurdy, S. A., Achenbaum, L. S., Whitney, S. N., & McGuire, A. L. (2012). “Snake-oil,” “quack medicine,” and “industrially cultured organisms:” Biovalue and the commercialization of human microbiome research. BMC Medical Ethics, 13(1), 28.CrossRefGoogle Scholar
  126. Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241–244.CrossRefGoogle Scholar
  127. Smith, N. (2009). Nature as accumulation strategy Socialist Register, 43.
  128. Soja, E. W. (1989). Postmodern geographies: The reassertion of space in critical social theory. London: Verso.Google Scholar
  129. Stallins, J. A. (2012). Scale, causality, and the new organism–environment interaction. Geoforum, 43(3), 427–441.CrossRefGoogle Scholar
  130. Stotz, K. C., Bostanci, A., & Griffiths, P. E. (2006). Tracking the shift to ‘postgenomics’. Public Health Genomics, 9(3), 190–196.CrossRefGoogle Scholar
  131. Thrift, N. (2012). The insubstantial pageant: Producing an untoward land. Cultural Geographies, 19(2), 141–168.CrossRefGoogle Scholar
  132. Tito, R. Y., Knights, D., Metcalf, J., Obregon-Tito, A. J., Cleeland, L., Najar, F., et al. (2012). Insights from characterizing extinct human gut microbiomes. PLoS ONE, 7(12), e51146.CrossRefGoogle Scholar
  133. Ursell, L. K., Van Treuren, W., Metcalf, J. L., Pirrung, M., Gewirtz, A., & Knight, R. (2013). Replenishing our defensive microbes. BioEssays, 35(9), 810–817.CrossRefGoogle Scholar
  134. Velasquez-Manoff, M. (2012). An epidemic of absence: A new way of understanding allergies and autoimmune diseases. New York: Simon and Schuster.Google Scholar
  135. Waddington, C. H. (1952). The epigenetics of birds. Cambridge England: University Press.Google Scholar
  136. Waggoner, M. R., & Uller, T. (2015). Epigenetic determinism in science and society. New Genetics and Society, 34(2), 177–195.CrossRefGoogle Scholar
  137. Waldby, C. (2009). Biobanking in Singapore: Post-developmental state, experimental population. New Genetics and Society, 28(3), 253–265.CrossRefGoogle Scholar
  138. Williams, K. E., Sng, O., & Neuberg, S. L. (2016). Ecology-driven stereotypes override race stereotypes. Proceedings of the National Academy of Sciences, 113(2), 310–315.CrossRefGoogle Scholar
  139. Wolf, S. M., Annas, G. J., & Elias, S. (2013). Patient autonomy and incidental findings in clinical genomics. Science, 340(6136), 1049–1050.CrossRefGoogle Scholar
  140. Wyatt, S., Harris, A., Adams, S., & Kelly, S. E. (2013). Illness online: Self-reported data and questions of trust in medical and social research. Theory Culture & Society, 30(4), 131–150.CrossRefGoogle Scholar
  141. Wynne, B. (2005). Reflexing complexity: Post-genomic knowledge and reductionist returns in public science. Theory Culture & Society, 22(5), 67–94.CrossRefGoogle Scholar
  142. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.Google Scholar
  143. Ziegelstein, R. C. (2015). Personomics. JAMA Internal Medicine, 175(6), 888–889.CrossRefGoogle Scholar
  144. Zuk, M. (2013). Paleofantasy: What evolution really tells us about sex, diet, and how we live. New York: W.W. Norton & Company.Google Scholar
  145. Zwart, N. H. (2007). Genomics and self-knowledge: Implications for societal research and debate. New Genetics and Society, 26(2), 181–202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • J. Anthony Stallins
    • 1
    Email author
  • Derek M. Law
    • 1
  • Sophia A. Strosberg
    • 1
  • Jarius J. Rossi
    • 1
  1. 1.Department of GeographyUniversity of KentuckyLexingtonUSA

Personalised recommendations