GeoJournal

pp 1–20 | Cite as

The adoption of agroecology and conventional farming techniques varies with socio-demographic characteristics of small-scale farmers in the Fako and Meme divisions of Cameroon

Article

Abstract

This study verifies how the adoption of agroecology and conventional farming techniques varies among different socio-economic characteristics. Data acquisition involved the administering of 200 questionnaires and the organization of two focus group discussions (FGDs). The data collected were analysed using: frequencies, means, probabilities, odds and odd ratios. The FGDs were analysed using context analysis. The analyses were performed in SPSS version 20 and Wordstat 7. The results reveal that older respondents tend to adopt conventional farming techniques more than other categories due mainly to inertia or the inability to adapt to changes and their limited propensity to adopt agroecology techniques. Farmers with fewer years of farming experience are more open to agroecology related techniques due to higher inertia while those with more years of farming experience converge with older farmers who tend to prefer conventional farming. The higher the level of income, the more frequent the use of agroecology techniques. Families with more members who live and work on the farm are more open to agroecology; however, there is a limit beyond which the more the number of family members who live and work on the farm, the less the probability of adopting agroecology techniques. The higher the level of education, the greater the propensity to adopt and experiment with agroecology.

Keywords

Agroecology approach Conventional approach Adoption rates Socio-economic characteristics Cameroon Fako and Meme divisions 

References

  1. Adam, Y. O., Pretzsch, J., & Darr, D. (2015). Land use conflicts in central Sudan: Perception and local coping mechanisms. Land Use Policy, 42(1), 1–6.CrossRefGoogle Scholar
  2. Adesina, A. A., Mbile, D., Nkamleu, G. B., & Endamana, D. (2000). Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of Southwest Cameroon. Agriculture, Ecosystems and Environment, 1581(3), 1–11.Google Scholar
  3. Ayuke, F. O., Vanlauwe, B., Six, J., Lelei, D. K., Kibunja, C. N., & Pulleman, M. M. (2011). Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 48(1), 53–62.CrossRefGoogle Scholar
  4. Badgley, C., Monghtader, J., Quintero, E., Zakem, E., Chappell, J., Aviles-Vazquez, K., et al. (2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22(2), 86–108.CrossRefGoogle Scholar
  5. Bado, B. V., Bationo, A., Lompo, F., Cescas, M. P., & Sedogo, M. P. (2007). Mineral fertilizers, organic amendments and crop rotation management for soil fertility maintenance in the Guinean zone of Burkina Faso (West Africa). In Advances in integrated soil fertility management in sub-Saharan Africa: Challenges and Opportunities (pp. 171–177). Berlin: Springer.Google Scholar
  6. Bado, B. V., Sedogo, M. P., Cescas, M. P., Lompo, F., & Bationo, A. (1997). Effet à long terme des fumurs sur le sol et les rendements du maïs au Burkina Faso. Cahiers Agricultures, 6(6), 571–575.Google Scholar
  7. Bationo, A., & Mokwunye, A. U. (1991). Role of manure and crop residues in alleviating soil fertility constraints of crop production with special reference to the Sahelian and Sudanean zones of West Africa. Fertilizer Research, 29(1), 117–125.CrossRefGoogle Scholar
  8. Bayard, B., Jolly, C., & Shannon, D. A. (2007). The economics of adoption and management of alley cropping in Haiti. Journal of Environmental Management, 84(2), 62–70. doi:10.1016/j.jenvman.2006.05.001.CrossRefGoogle Scholar
  9. Bezner-Kerr, R., Snapp, S., Chirwa, M., Shumba, L., & Msachi, R. (2007). Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Experimental Agriculture, 43(1), 437–453.Google Scholar
  10. Borlaug, N. E. (2000). Ending world hunger. The promise of biotechnology and the threat of anti-science zealotry. Plant Physiology, 124(3), 487–490.CrossRefGoogle Scholar
  11. Brock, B., & Foeken, D. (2006). Urban horticulture for a better environment: A case study of Cotonou, Benin. Habitat International, 30(2), 558–578.CrossRefGoogle Scholar
  12. Burton, M., Rigby, D., & Young, T. (1999). Analysis of the determinants of adoption of organic horticultural techniques in the UK. Journal of Agricultural Economics, 50(1), 47–63.CrossRefGoogle Scholar
  13. Chivenge, P., Vanlauwe, B., Gentile, R., Wangechi, R., Mugendi, D., Van Kessel, C., et al. (2009). Organic and mineral input management to enhance crop productivity in Central Kenya. Agronomy Journal, 101(2), 1266–1275.CrossRefGoogle Scholar
  14. Demelash, N., Bayu, W., Tesfaye, S., Zidat, F., & Sommer, R. (2014). Current and residual effects of compost and inorganic fertilizer on wheat and soil chemical properties. Nutrient Cycling in Agroecosystem, 100(1), 357–367.CrossRefGoogle Scholar
  15. Dounias, I., Aubry, C., & Capillon, A. (2002). Decision-making process for crop management on African farms. Modelling from a case study of cotton crops in northern Cameroon. Agricultural Systems, 73(3), 233–260.CrossRefGoogle Scholar
  16. Drechsel, O., Gyiele, L., Kunze, D., & Cofie, O. (2001). Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecological Economics, 38(3), 251–258.CrossRefGoogle Scholar
  17. DSCN. (2002). Conditions de vie des populations et profil de pauvrete´ au Cameroun en 2001: premiers resultats. Yaounde´-R.C: Direction de la Statistique et de la Comptabilite´ Nationale, Mai 2002.Google Scholar
  18. Dubois, O. (2011). The state of the world’s land and water resources for food and agriculture; managing systems at risk. Rome: FAO.Google Scholar
  19. Epule, T. E., & Bryant, C. R. (2016a). Assessing the effects of agroecology and conventional farming techniques on small-scale peasant farmers’ crop yields in the Fako and Meme divisions of Cameroon. African Journal of Agricultural Research, 10(11), 849–866. doi:10.5897/AJAR2015.10498.CrossRefGoogle Scholar
  20. Epule, T. E., & Bryant, C. R. (2016b). Small scale farmers’ indigenous agricultural adaptation options in the face of declining or stagnant crop yields in the Fako and Meme divisions of Cameroon. Agriculture, 6(1), 22. doi:10.3390/agriculture6020022.CrossRefGoogle Scholar
  21. Epule, T. E., Bryant, C. R., Akkari, C., & Daouda, O. (2015). Can organic fertilizers set the pace for a greener arable agricultural revolution in Africa? Analysis, synthesis and way forward. Land Use Policy, 47(1), 179–187. doi:10.1016/j.landusepol.2015.01.033.CrossRefGoogle Scholar
  22. Epule, T. E., Peng, C., Lepage, L., Nguh, B. S., & Mafany, N. M. (2012). Can the African food supply model learn from the Asian food supply model? Quantification with statistical methods. Environment, Development and Sustainability, 14(4), 593–610. doi:10.1007/s10668-012-9341-0.CrossRefGoogle Scholar
  23. Folefack, A. J. J. (2009). The substitution of inorganic fertilizers by compost from household waste in Cameroon: Economic analysis with a partial equilibrium model. Waste Management Research, 27(1), 207–223.CrossRefGoogle Scholar
  24. Food and Agricultural Organization of the United Nations, & United Nation Industrial Development Organization. (2008). Agricultural mechanization in Africa…time for action. Planning investment for enhanced agricultural productivity report of an expert group meeting January 2008, Vienna Austria. Rome: FAO.Google Scholar
  25. Gockowski, J., & Ndoumbe, M. (2004). The adoption of intensive mono-crop horticulture in southern Cameroon. Agricultural Economics, 30(2), 195–202.CrossRefGoogle Scholar
  26. Godfray, H. C. J., Beddington, I. R., Crute, L., Haddad, D., Lawrence, J. F., Murr, J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(2), 812–818.CrossRefGoogle Scholar
  27. Gould, B. W., Saupe, W. E., & Klemme, R. M. (1989). Conservation tillage: The role of farm and operator characteristics and the perception of soil erosion. Land Economics, 65(1), 167–182.CrossRefGoogle Scholar
  28. Henao, J., & Baanante, C. (2006). Agricultural production and soil nutrient mining in Africa: Implications for resource conservation and policy development. IFDC-International Centre for Soil Fertility and Agricultural Development. Alabama, USA.Google Scholar
  29. Hossain, M., & Singh, V. P. (2000). Fertilizer use in Asian agriculture: Implications for sustaining food security and the environment. Nutrient Cycling in Agroecosystems, 57(1), 155–169.CrossRefGoogle Scholar
  30. Kearney, S., Six, S., & Scow, K. (2012). Forty percent revenue increase by combining organic and mineral nutrient amendments in Ugandan smallholder market vegetable production. Agronomy for Sustainable Development, 32(1), 831–839.CrossRefGoogle Scholar
  31. Kombiok, J., Buah, S., Dzomeku, L., & Abdulai, H. (2013). Sources of pod yield losses in groundnut in Northern Savana zone of Ghana. West African Journal of Applied Ecology, 20(2), 53–63.Google Scholar
  32. Krawinkel, M. B. (2012). Overcoming undernutrition with local resources in Africa, Asia and Latin America. Journal of the Science of Food and Agriculture, 92(2), 2757–2759.CrossRefGoogle Scholar
  33. Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation and Development, 17(2), 197–209.CrossRefGoogle Scholar
  34. Lindell, L., Astrom, M. E., & Oberg, T. (2010a). Land use change versus natural controls on stream water chemistry in the Subandean Amazon, Peru. Applied Geochemistry, 25(3), 485–495.CrossRefGoogle Scholar
  35. Lindell, L., Astrom, M. E., & Sarenbo, S. (2010b). Effects of forest slash and burn on the distribution of trace elements in floodplain sediments and soils of the Subandean Amazon, Peru. Applied Geochemistry, 25(8), 1097–1106.CrossRefGoogle Scholar
  36. Liu, M., Hu, F., Chen, X., Huang, Q., Jiao, J., Zhang, B., et al. (2009). Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Applied Soil Ecology, 42(2), 166–175.CrossRefGoogle Scholar
  37. Manga, V. E., Forton, O. T., & Read, A. D. (2008). Waste management in Cameroon: A new policy perspective. Resources, Conservation and Recycling, 52(1), 592–600.CrossRefGoogle Scholar
  38. Matson, P. A., Naylor, R., & Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic, and economic aspects of fertilizer management. Science, 280(3), 112–114.CrossRefGoogle Scholar
  39. Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277(5325), 504–509.CrossRefGoogle Scholar
  40. National Institute of Statistics. (2010). The population of Cameroon: Reports of the presentation of the final results of the 3rd general census of population and habitats (RGPH): Central Bureau of Census and Population Studies. Yaounde: National Institute of Statistics, Ministry of the Economy and Finance.Google Scholar
  41. Negi, V. S. (2014). Where have all the small farmers gone? The story of agriculture and the small Indian farmer. New Delhi: Focus on the Global South. www.rosalux-southasia.org.
  42. Nkamleu, G. B. (2007). Modeling farmers’ decisions on integrated soil nutrient management in sub-Saharan Africa: A multinomial Logit analysis in Cameroon. In A. Bationo, B. Waswa, J. Kihara, & J. Kimetu (Eds.), Advances in integrated soil fertility management in sub-Saharan Africa: Challenges and opportunities (pp. 891–904). Berlin: Springer.CrossRefGoogle Scholar
  43. Nkamleu, G. B., & Adesina, A. A. (2000). Determinants of chemical input use in peri-urban lowland systems: Bivariate probit analysis in Cameroon. Agricultural Systems, 63(2), 111–121.CrossRefGoogle Scholar
  44. Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agriculture, Ecosystems and Environment, 83(1), 27–42.CrossRefGoogle Scholar
  45. Pichot, J., Sedogo, M. P., & Poulain, J. F. (1981). Évolution de la fertilité d’un sol ferrugineux tropical sous l’influence des fumures minérales et organiques. Agronomie Tropicale, 36(1), 122–133.Google Scholar
  46. Reid, J. F., Norris, W. R., & Schueller, J. (2003). Reducing the manufacturing and management costs of tractors and agricultural equipment. Agricultural Engineering International: The CIGR Journal of Science, Research and Development, 5(1), 14–26.Google Scholar
  47. Rosegrant, M. W., & Svendsen, M. (1993). Asian food production in 1990s: Irrigation investment and management in Asia. Food Policy, 18(2), 13–32.CrossRefGoogle Scholar
  48. Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(2), 19703–19708.CrossRefGoogle Scholar
  49. Seufert, V., Ramankutty, N., & Foley, J. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(229), 229–232.CrossRefGoogle Scholar
  50. Sevink, J. F., Ebanga, O., & Meijer, A. J. (2004). Land-use related organic matter dynamics in north Cameroon soils assessed by 13C analysis of soil organic matter fraction. European Journal of Soil Science, 56(1), 103–111. doi:10.1111/j.1365-2389.2004.00649.x.CrossRefGoogle Scholar
  51. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can Support a Greener Revolution in Africa. Proceedings of the National Academy of Science, 107(48), 20840–20845. doi:10.1073/pnas.1007199107.CrossRefGoogle Scholar
  52. Sotamenou, J., & Parrot, L. (2013). Sustainable urban agriculture and adoption of compost in Cameroon. International Journal of Agricultural Sustainability, 11(3), 282–295.CrossRefGoogle Scholar
  53. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(2), 671–677.CrossRefGoogle Scholar
  54. Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Shepherd, K. D., & Giller, K. E. (2005). Exploring diversity in soil fertility management of smallholder farms in western Kenya: I. Heterogeneity at region and farm scale. Agriculture, Ecosystems and Environment, 110(2), 149–165.CrossRefGoogle Scholar
  55. World Trade Organization. (2007). Trade policy review: Cameroon and Gabon, 2007. Geneva: World Trade Organization.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Terence Epule Epule
    • 1
  • Christopher Robin Bryant
    • 1
  1. 1.Département de GéographieUniversité de MontréalMontrealCanada

Personalised recommendations