, Volume 82, Issue 4, pp 769–785 | Cite as

What is the relationship between food shopping and daily mobility? A relational approach to analysis of food access

  • Jerry ShannonEmail author
  • W. Jay Christian


Recent research on food access has increasingly focused on how individuals’ daily mobility, much of it based on activity spaces created from GPS data. In this paper, we expand this research through an analysis of a large transit survey (n = 21,298 households) from Minneapolis/St. Paul, Minnesota. We do this using relational approach focused on the topological connections found in household travel patterns rather than measures of exposure based on geographic distance. Our exploratory data analysis analyzes both grocery shopping and eating out across the metropolitan area, focusing on the position of utilized food sources relative to home and work locations, utilized modes of transit, and other daily activities often combined with food shopping. Households often used food sources located outside their residential neighborhoods, usually moving toward the central city to do so. Eating out occurred farther from home than grocery shopping, though in many cases close to work. Automobile use was most common for grocery shopping trips, but less so in the lowest income households and in the central city. Our findings show that a relational approach can identify distinctive patterns in everyday food provisioning by emphasizing the connections between food shopping and other everyday household activities.


Food access Mobility Transit Exploratory data analysis 



The authors wish to thank Debarchana Ghosh, Steven Holloway, and the journal editor and anonymous reviewers for their helpful feedback during the writing and revision of this article.

Compliance with ethical standards

This research is based on a publically available secondary dataset we obtained from a government source, and thus our work involved no direct contact with human subjects or release of sensitive information.

Conflict of interest

We have no conflicts of interest in publishing this research.


  1. Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. In P. Longley, M. Goodchild, D. Maguire & D. Rhind (Eds.), Geographic information systems: Principles, techniques, management and applications (pp. 253–266). New York: Wiley.Google Scholar
  2. Apparicio, P., Cloutier, M.-S., & Shearmur, R. (2007). The case of Montréal’s missing food deserts: Evaluation of accessibility to food supermarkets. International Journal of Health Geographics, 6(4), 1–13. doi: 10.1186/1476-072X-6-4.Google Scholar
  3. Black, C., Moon, G., & Baird, J. (2014). Dietary inequalities: what is the evidence for the effect of the neighbourhood food environment? Health and Place, 27, 229–242. doi: 10.1016/j.healthplace.2013.09.015.CrossRefGoogle Scholar
  4. Boone-Heinonen, J., Gordon-Larsen, P., Kiefe, C. I., Shikany, J. M., Lewis, C. E., & Popkin, B. M. (2011). Fast food restaurants and food stores: longitudinal associations with diet in young to middle-aged adults: The CARDIA study. Archives of Internal Medicine, 171(13), 1162–1170. doi: 10.1001/archinternmed.2011.283.CrossRefGoogle Scholar
  5. Cannuscio, C. C., Tappe, K., Hillier, A., Buttenheim, A., Karpyn, A., & Glanz, K. (2013). Urban food environments and residents’ shopping behaviors. American Journal of Preventive Medicine, 45(5), 606–614. doi: 10.1016/j.amepre.2013.06.021.CrossRefGoogle Scholar
  6. Caspi, C. E., Sorensen, G., Subramanian, S. V., & Kawachi, I. (2012). The local food environment and diet: a systematic review. Health and Place, 18(5), 1172–1187. doi: 10.1016/j.healthplace.2012.05.006.CrossRefGoogle Scholar
  7. Chen, X., & Kwan, M.-P. (2015). Contextual uncertainties, human mobility, and perceived food environment: The uncertain geographic context problem in food access research. American Journal of Public Health. doi: 10.2105/AJPH.2015.302792.CrossRefGoogle Scholar
  8. Chen, J., Shaw, S.-L., Yu, H., Lu, F., Chai, Y., & Jia, Q. (2011). Exploratory data analysis of activity diary data: A space–time GIS approach. Journal of Transport Geography, 19(3), 394–404. doi: 10.1016/j.jtrangeo.2010.11.002.CrossRefGoogle Scholar
  9. Christian, W. J. (2012). Using geospatial technologies to explore activity-based retail food environments. Spatial and Spatio-Temporal Epidemiology, 3(4), 287–295. doi: 10.1016/j.sste.2012.09.001.CrossRefGoogle Scholar
  10. Clifton, K. J. (2004). Mobility strategies and food shopping for low-income families: A case study. Journal of Planning Education and Research, 23(4), 402–413. doi: 10.1177/0739456X04264919.CrossRefGoogle Scholar
  11. Conradson, D., & Latham, A. (2005). Transnational urbanism: Attending to everyday practices and mobilities. Journal of Ethnic and Migration Studies, 31(2), 227–233. doi: 10.1080/1369183042000339891.CrossRefGoogle Scholar
  12. Cox, N. J., & Jones, K. (1981). Exploratory data analysis. In N. Wrigley & R. J. Bennett (Eds.), Quantitative geography: A British view (pp. 135–143). London: Routledge and Kegan Paul.Google Scholar
  13. Cresswell, T. (2010). Mobilities I: Catching up. Progress in Human Geography, 35(4), 550–558. doi: 10.1177/0309132510383348.CrossRefGoogle Scholar
  14. Cummins, S., Curtis, S., Diez-Roux, A. V., & Macintyre, S. (2007). Understanding and representing “place” in health research: A relational approach. Social Science and Medicine, 65(9), 1825–1838. doi: 10.1016/j.socscimed.2007.05.036.CrossRefGoogle Scholar
  15. Cummins, S., Flint, E., & Matthews, S. A. (2014). New neighborhood grocery store increased awareness of food access but did not alter dietary habits or obesity. Health Affairs, 33(2), 283–291. doi: 10.1377/hlthaff.2013.0512.CrossRefGoogle Scholar
  16. Dykes, J. (1998). Cartographic visualization: Exploratory spatial data analysis with local indicators of spatial association using Tcl/Tk and cdv. The Statistician, 47(3), 485–497.Google Scholar
  17. Elbel, B., Moran, A., Dixon, L. B., Kiszko, K., Cantor, J., Abrams, C., et al. (2015). Assessment of a government-subsidized supermarket in a high-need area on household food availability and children’s dietary intakes. Public Health Nutrition. doi: 10.1017/S1368980015000282.Google Scholar
  18. Fleischhacker, S. E., Evenson, K. R., Rodriguez, D. A., & Ammerman, A. S. (2011). A systematic review of fast food access studies. Obesity Reviews, 12(5), e460–e471. doi: 10.1111/j.1467-789X.2010.00715.x.CrossRefGoogle Scholar
  19. Forsyth, A., Wall, M., Larson, N., Story, M., & Neumark-Sztainer, D. (2012). Do adolescents who live or go to school near fast-food restaurants eat more frequently from fast-food restaurants? Health and Place, 18(6), 1261–1269. doi: 10.1016/j.healthplace.2012.09.005.CrossRefGoogle Scholar
  20. Frank, L., Bradley, M., Kavage, S., Chapman, J., & Lawton, T. K. (2007). Urban form, travel time, and cost relationships with tour complexity and mode choice. Transportation, 35(1), 37–54. doi: 10.1007/s11116-007-9136-6.CrossRefGoogle Scholar
  21. Glanz, K., Sallis, J. F., Saelens, B. E., & Frank, L. D. (2005). Healthy nutrition environments: Concepts and measures. American Journal of Health Promotion, 19(5), 330–333.CrossRefGoogle Scholar
  22. Hincks, S., & Wong, C. (2009). The spatial interaction of housing and labour markets: Commuting flow analysis of North West England. Urban Studies, 47(3), 620–649. doi: 10.1177/0042098009349777.CrossRefGoogle Scholar
  23. Horner, M. W., & Wood, B. S. (2014). Capturing individuals’ food environments using flexible space–time accessibility measures. Applied Geography, 51, 99–107. doi: 10.1016/j.apgeog.2014.03.007.CrossRefGoogle Scholar
  24. Inagami, S., Cohen, D. A., Brown, A. F., & Asch, S. M. (2009). Body mass index, neighborhood fast food and restaurant concentration, and car ownership. Journal of Urban Health, 86(5), 683–695. doi: 10.1007/s11524-009-9379-y.CrossRefGoogle Scholar
  25. Jeffery, R. W., Baxter, J., McGuire, M., & Linde, J. (2006). Are fast food restaurants an environmental risk factor for obesity? The International Journal of Behavioral Nutrition and Physical Activity. doi: 10.1186/1479-5868-3-2.Google Scholar
  26. Kerr, J., Frank, L., Sallis, J. F., Saelens, B., Glanz, K., & Chapman, J. (2012). Predictors of trips to food desintations. The International Journal of Behavioral Nutrition and Physical Activity, 9(1), 58. doi: 10.1186/1479-5868-9-58.CrossRefGoogle Scholar
  27. Kestens, Y., Lebel, A., Daniel, M., Thériault, M., & Pampalon, R. (2010). Using experienced activity spaces to measure foodscape exposure. Health and Place, 16(6), 1094–1103. doi: 10.1016/j.healthplace.2010.06.016.CrossRefGoogle Scholar
  28. Kneebone, E., & Berube, A. (2013). Confronting suburban poverty in America. Washington, DC: Brookings Institution Press.Google Scholar
  29. Kwan, M.-P. (2000). Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set. Transportation Research Part C: Emerging Technologies, 8(1–6), 185–203. doi: 10.1016/S0968-090X(00)00017-6.CrossRefGoogle Scholar
  30. Kwan, M.-P. (2012). The uncertain geographic context problem. Annals of the Association of American Geographers, 102(5), 37–41.Google Scholar
  31. Latham, A. (2003). Urbanity, lifestyle and making sense of the new urban cultural economy: Notes from Auckland, New Zealand. Urban Studies, 40(9), 1699–1724. doi: 10.1080/0042098032000106564.CrossRefGoogle Scholar
  32. Ledoux, T. F., & Vojnovic, I. (2012). Going outside the neighborhood: The shopping patterns and adaptations of disadvantaged consumers living in the lower eastside neighborhoods of Detroit, Michigan. Health and Place, 19C(1), 1–14. doi: 10.1016/j.healthplace.2012.09.010.Google Scholar
  33. Martin, K. S., Ghosh, D., Page, M., Wolff, M., McMinimee, K., & Zhang, M. (2014). What role do local grocery stores play in urban food environments? A case study of Hartford-Connecticut. PLoS One, 9(4), e94033. doi: 10.1371/journal.pone.0094033.CrossRefGoogle Scholar
  34. Massey, D. (2005). For space. London: Sage.Google Scholar
  35. McQuoid, J., & Dijst, M. (2012). Bringing emotions to time geography: The case of mobilities of poverty. Journal of Transport Geography, 23, 26–34. doi: 10.1016/j.jtrangeo.2012.03.019.CrossRefGoogle Scholar
  36. Nielsen, T., & Hovgesen, H. (2008). Exploratory mapping of commuter flows in England and Wales. Journal of Transport Geography, 16(2), 90–99. doi: 10.1016/j.jtrangeo.2007.04.005.CrossRefGoogle Scholar
  37. Raja, S., Yadav, P., & Ma, C. (2008). Beyond food deserts: Measuring and mapping racial disparities in neighborhood food environments. Journal of Planning Education and Research, 27(4), 469–482. doi: 10.1177/0739456X08317461.CrossRefGoogle Scholar
  38. Rogalsky, J. (2010). The working poor and what GIS reveals about the possibilities of public transit. Journal of Transport Geography, 18(2), 226–237. doi: 10.1016/j.jtrangeo.2009.06.008.CrossRefGoogle Scholar
  39. Saarloos, D., Kim, J.-E., & Timmermans, H. (2009). The built environment and health: Introducing individual space-time behavior. International Journal of Environmental Research and Public Health, 6(6), 1724–1743. doi: 10.3390/ijerph6061724.CrossRefGoogle Scholar
  40. Schmöcker, J.-D., Su, F., & Noland, R. B. (2010). An analysis of trip chaining Among older London residents. Transportation, 37(1), 105–123. doi: 10.1007/s11116-009-9222-z.CrossRefGoogle Scholar
  41. Shannon, J. (2016). Beyond the supermarket solution: Linking food deserts, neighborhood context, and everyday mobility. Annals of the American Association of Geographers, 106(1), 186–202. doi: 10.1080/00045608.2015.1095059.CrossRefGoogle Scholar
  42. Sheller, M., & Urry, J. (2006). The new mobilities paradigm. Environment and Planning A, 38(2), 207–226. doi: 10.1068/a37268.CrossRefGoogle Scholar
  43. Smith, N. (2008). Uneven development: Nature, capital, and the production of space (3rd ed.). Athens, GA: University of Georgia Press.Google Scholar
  44. Tana, Kwan, M.-P., & Chai, Y. (2015). Urban form, car ownership and activity space in inner suburbs: A comparison between Beijing (China) and Chicago (United States). Urban Studies. doi: 10.1177/0042098015581123.Google Scholar
  45. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley Pub. Co.Google Scholar
  46. United States Census Bureau. (2015). American FactFinder. Retrieved from
  47. USDA Economic Research Service. (2009). Access to affordable and nutritious foodMeasuring and understanding food deserts and their consequences: Report to congress. Retrieved from
  48. USDA Economic Research Service. (2014). Food Access Research Atlas—Documentation. Retrieved from
  49. Ver Ploeg, M., Mancino, L., Todd, J. E., Clay, D. M., & Scharadin, B. (2015). Where do Americans usually shop for food and how do they travel to get there? Initial findings from the national household food acquisition and purchase survey. Washington, DC: USDA Economic Research Service.Google Scholar
  50. Vojnovic, I., Lee, J., Kotval-K, Z., Podagrosi, A., Varnakovida, P., Ledoux, T., et al. (2012). The burdens of place: A socio-economic and ethnic/racial exploration into urban form, accessibility and travel behaviour in the lansing capital region, Michigan. Journal of Urban Design, 18(1), 1–35. doi: 10.1080/13574809.2012.683403.CrossRefGoogle Scholar
  51. Widener, M. J., Farber, S., Neutens, T., & Horner, M. W. (2013). Using urban commuting data to calculate a spatiotemporal accessibility measure for food environment studies. Health and Place, 21, 1–9. doi: 10.1016/j.healthplace.2013.01.004.CrossRefGoogle Scholar
  52. Widener, M. J., & Shannon, J. (2014). When are food deserts? Integrating time into research on food accessibility. Health and Place, 30, 1–3. doi: 10.1016/j.healthplace.2014.07.011.CrossRefGoogle Scholar
  53. Zenk, S. N., Schulz, A. J., & Israel, B. (2005). Neighborhood racial composition, neighborhood poverty, and the spatial accessibility of supermarkets in metropolitan Detroit. American Journal of Public Health, 95(4), 660–667. doi: 10.2105/AJPH.2004.042150.CrossRefGoogle Scholar
  54. Zenk, S. N., Schulz, A. J., Matthews, S. A., Odoms-Young, A. M., Wilbur, J., Wegrzyn, L., et al. (2011). Activity space environment and dietary and physical activity behaviors: A pilot study. Health and Place. doi: 10.1016/j.healthplace.2011.05.001.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of GeorgiaAthensUSA
  2. 2.University of KentuckyLexingtonUSA

Personalised recommendations