Advertisement

GeoJournal

, Volume 82, Issue 4, pp 721–734 | Cite as

Spatialities of data: mapping social media ‘beyond the geotag’

  • Taylor Shelton
Article

Abstract

As emerging sources of so-called ‘big data’ are increasingly utilized in order to understand social and spatial processes, so too have these new data sources become the subject of harsh criticism from more critically-oriented geographers and social scientists. This paper argues that one of the major issues preventing a more productive dialogue between critical human geographers and those already engaging in the mapping and analysis of these new data sources is around the ways that space and spatiality are conceptualized in social media mapping. As such, this paper draws on and extends earlier critiques of the ‘spatial ontology of the geotag’, in which the geographic analysis of geotagged social media data over-privileges the single latitude/longitude coordinate pair attached to each individual data point, often leading to the kind of simplistic mappings and interpretations prevalent today. The goals of this paper are two-fold: first, to demonstrate how the spatial ontology of the geotag is implicitly operationalized within mainstream social media mapping exercises, and how this understanding of space remains incongruent with existing conceptions of space drawn from human geography. Second, using the example of tweeting in the wake of the August 2014 killing of an unarmed African–American teenager by a police officer in Ferguson, Missouri, this paper demonstrates how a more geographically-situated analysis of this kind of data, inspired by relational or multidimensional conceptualizations of space, can yield alternative understandings of the social processes embedded in such data.

Keywords

Big data Critical GIS Relational space Social media Socio-spatial theory Twitter 

References

  1. Amin, A. (2002). Spatialities of globalisation. Environment and Planning A, 34(3), 385–399.CrossRefGoogle Scholar
  2. Amin, A. (2007). Re-thinking the urban social. City, 11(1), 100–114.CrossRefGoogle Scholar
  3. Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired Magazine 16(7). http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
  4. Barnes, T. J. (2013). Big data, little history. Dialogues in Human Geography, 3(3), 297–302.CrossRefGoogle Scholar
  5. Bonilla, Y., & Rosa, J. (2015). #Ferguson: Digital protest, hashtag ethnography, and the racial politics of social media in the United States. American Ethnologist, 42(1), 4–17.CrossRefGoogle Scholar
  6. Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679.CrossRefGoogle Scholar
  7. Brownlee, J. (2014). Watch how the twitter conversation of #Ferguson spread across America”. FastCo Design. 18 August. http://www.fastcodesign.com/3034472/infographic-of-the-day/watch-how-the-twitter-conversation-of-ferguson-spread-across-america.
  8. Capps, K. (2014). Twitter made an amazing map of twitter going nuts over Ferguson. CityLab. 14 August. http://www.citylab.com/crime/2014/08/twitter-made-an-amazing-map-of-twitter-going-nuts-over-ferguson/376119/.
  9. CartoDB (2014). CartoDB twitter maps in today, yahoo, ESPN, time, CNBC, USA today, daily news, Huffington post…. CartoDB Blog. 28 June. http://blog.cartodb.com/cartodb-twitter-maps-in-today-yahoo-espn-time-cnbc/.
  10. Chen, X., & Yang, X. (2014). Does food environment influence food choices? A geographical analysis through ‘tweets’. Applied Geography, 51, 82–89.CrossRefGoogle Scholar
  11. Cheng, Z., Caverlee, J., & Lee, K. (2010). You are where you tweet: A content-based approach to geo-locating twitter users. In Proceedings of the 19th ACM international conference on information and knowledge management (pp. 759–68) CIKM’10. New York, NY: ACM.Google Scholar
  12. Crampton, J. W. (2010). Mapping: A critical introduction to cartography and GIS. Hoboken: Wiley.Google Scholar
  13. Crampton, J. W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M. W., & Zook, M. (2013). Beyond the Geotag: Situating ‘big data’ and leveraging the potential of the geoweb. Cartography and Geographic Information Science, 40(2), 130–139.CrossRefGoogle Scholar
  14. Cranshaw, J., Schwartz, R., Hong, J. I., & Sadeh, N. (2012). The livehoods project: Utilizing social media to understand the dynamics of a city. In Proceedings of the sixth international AAAI conference on weblogs and social media, June, pp. 58–65.Google Scholar
  15. Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17(1), 124–147.CrossRefGoogle Scholar
  16. Crutcher, M., & Zook, M. (2009). Placemarks and waterlines: Racialized cyberscapes in post-Katrina Google Earth. Geoforum, 40(4), 523–534.CrossRefGoogle Scholar
  17. Curry, M. R. (1995). On space and spatial practice in contemporary geography. In C. Earle, K. Mathewson, & M. S. Kenzer (Eds.), Concepts in human geography (pp. 3–32). Lanham: Rowman and Littlefield.Google Scholar
  18. Davis, C. A., Jr, Pappa, G. L., de Oliveira, D. R. R., & de L Arcanjo, F. (2011). Inferring the location of twitter messages based on user relationships. Transactions in GIS, 15(6), 735–751.CrossRefGoogle Scholar
  19. Field, K. (2013). The flawless map. Cartonerd. 17 December. http://cartonerd.blogspot.com/2013/12/the-flawless-map.html.
  20. Field, K. (2014). I’m wondering when people will realise the animated ectoplasm twitter maps don’t actually show anything. http://t.co/SJVYLyBn1F” [Tweet]. 17 June. https://twitter.com/kennethfield/status/478775510386741248.
  21. Fischer, E. (2010). Locals vs. tourists. https://www.flickr.com/photos/walkingsf/sets/72157624209158632/.
  22. Fischer, E. (2014). Making the most detailed tweet map ever. Mapbox Blog. 3 December. https://www.mapbox.com/blog/twitter-map-every-tweet/.
  23. Fung, B. (2014). Watch twitter explode along with Ferguson. The Washington Post. 14 August. http://www.washingtonpost.com/blogs/the-switch/wp/2014/08/14/watch-twitter-explode-along-with-ferguson.
  24. Goodchild, M. F. (2006). GIScience ten years after ground truth. Transactions in GIS, 10(5), 687–692.CrossRefGoogle Scholar
  25. Goodspeed, R. (2013). The limited usefulness of social media and digital trace data for urban social research. In Proceedings of the seventh international AAAI conference on weblogs and social media. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6178.
  26. Graham, S. (1998). The end of geography or the explosion of place? Conceptualizing space, place and information technology. Progress in Human Geography, 22(2), 165–185.CrossRefGoogle Scholar
  27. Graham, M., & Shelton, T. (2013). Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography, 3(3), 255–261.CrossRefGoogle Scholar
  28. Graham, M., & Zook, M. (2011). Visualizing global cyberscapes: Mapping user-generated placemarks. Journal of Urban Technology, 18(1), 115–132.CrossRefGoogle Scholar
  29. Graham, M., & Zook, M. (2013). Augmented realities and uneven geographies: Exploring the geolinguistic contours of the web. Environment and Planning A, 45(1), 77–99.CrossRefGoogle Scholar
  30. Hargittai, E. (2015). Is bigger always better? Potential biases of big data derived from social network sites. The Annals of the American Academy of Political and Social Science, 659(1), 63–76.CrossRefGoogle Scholar
  31. Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260–271.CrossRefGoogle Scholar
  32. Hecht, B., & Stephens, M. (2014). A tale of cities: Urban biases in volunteered geographic information. In Proceedings of the eighth international AAAI conference on weblogs and social media, pp. 197–205. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8114.
  33. Hill, A. (2015). In defense of burger cartography: Or, time to fall in love with maps all over again. 28 March. http://andrewxhill.com/blog/2015/03/28/in-defense-of-burger-cartography/.
  34. Kirsch, S. (1995). The incredible shrinking world? Technology and the production of space. Environment and Planning D: Society and Space, 13(5), 529–555.CrossRefGoogle Scholar
  35. Kitchin, R. (2014a). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 2053951714528481.CrossRefGoogle Scholar
  36. Kitchin, R. (2014b). The data revolution: Big data, open data, data infrastructures and their consequences. Thousand Oaks, CA: Sage.Google Scholar
  37. Kwan, M. (2013). Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Annals of the Association of American Geographers, 103(5), 1078–1086.CrossRefGoogle Scholar
  38. Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of google flu: Traps in big data analysis. Science, 343(6176), 1203–1205.CrossRefGoogle Scholar
  39. Leetaru, K., Wang, S., Cao, G., Padmanabhan, A., & Shook, E. (2013). Mapping the global twitter heartbeat: The geography of twitter. First Monday. doi: 10.5210/fm.v18i5.4366.Google Scholar
  40. Llorente, A., Garcia-Herranz, M., Cebrian, M., & Moro, E. (2014). Social media fingerprints of unemployment. arXiv. http://arxiv.org/abs/1411.3140.
  41. Lotan, G. (2011). Data reveals that ‘occupying’ twitter trending topics is harder than it looks!. Gilad Lotan Personal Blog. 12 October. http://giladlotan.com/2011/10/data-reveals-that-occupying-twitter-trending-topics-is-harder-than-it-looks/.
  42. Mahmud, J., Nichols, J., & Drews, C. (2012). Where is this tweet from? Inferring home locations of twitter users. In Proceedings of the sixth international AAAI conference on weblogs and social media, pp. 511–514.Google Scholar
  43. Mahmud, J., Nichols, J., & Drews, C. (2014). Home location identification of twitter users. ACM Transactions on Intelligent Systems and Technology, 5(3), 1–21.CrossRefGoogle Scholar
  44. Massey, D. (1991). A global sense of place. Marxism Today, 35(6), 24–29.Google Scholar
  45. Massey, D. (1999). Philosophy and politics of spatiality: Some considerations. Geographische Zeitschrift, 87(1), 1–12.Google Scholar
  46. Merriman, P., Jones, M., Olsson, G., Sheppard, E., Thrift, N., & Tuan, Y.-F. (2012). Space and spatiality in theory. Dialogues in Human Geography, 2(1), 3–22.CrossRefGoogle Scholar
  47. Mitchell, L., Frank, M. R., Harris, K. D., Dodds, P. S., & Danforth, C. M. (2013). The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PLoS One, 8(5), e64417.CrossRefGoogle Scholar
  48. Munroe, R. (2012). Heatmap. xkcd. https://xkcd.com/1138/.
  49. NBC News. (2014). As the debate and fires raged, Twitter’s “heat map” shows an engaged American public. http://nbcnews.to/1vJVqIa [Tweet]. 25 November. https://twitter.com/NBCNews/status/537270894251749377.
  50. Pew Research Center. (2015a). Social media update 2014. http://www.pewinternet.org/files/2015/01/PI_SocialMediaUpdate20144.pdf.
  51. Pew Research Center. (2015b). Teens, social media and technology overview 2015. http://www.pewinternet.org/files/2015/04/PI_TeensandTech_Update2015_0409151.pdf.
  52. Poorthuis, A., & Zook, M. (2015). Small stories in big data: Gaining insights from large spatial point pattern datasets. Cityscape, 17(1), 151–160.Google Scholar
  53. Poorthuis, A., Zook, M., Shelton, T., Graham, M., & Stephens, M. (2016). Using geotagged digital social data in geographic research. In N. Clifford, S. French, M. Cope, & T. Gillespie (Eds). Key methods in geography (3rd ed.). Sage: Thousand Oaks (forthcoming).Google Scholar
  54. Rundstrom, R. A. (1995). GIS, indigenous peoples, and epistemological diversity. Cartography and Geographic Information Systems, 22(1), 45–57.CrossRefGoogle Scholar
  55. Ruths, D., & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 1063–1064.CrossRefGoogle Scholar
  56. Sheller, M., & Urry, J. (2006). The new mobilities paradigm. Environment and Planning A, 38(2), 207–226.CrossRefGoogle Scholar
  57. Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of hurricane sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167–179.CrossRefGoogle Scholar
  58. Shelton, T., Poorthuis, A., & Zook, M. (2015). Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landscape and Urban Planning, 142, 198–211.CrossRefGoogle Scholar
  59. Shelton, T., Zook, M., & Graham, M. (2012). The technology of religion: Mapping religious cyberscapes. The Professional Geographer, 64(4), 602–617.CrossRefGoogle Scholar
  60. Sheppard, E. (1995). GIS and society: Towards a research agenda. Cartography and Geographic Information Systems, 22(1), 5–16.CrossRefGoogle Scholar
  61. Sheppard, E. (2001). Quantitative geography: Representations, practices, and possibilities. Environment and Planning D: Society and Space, 19(5), 535–554.CrossRefGoogle Scholar
  62. Soja, E. W. (1980). The socio-spatial dialectic. Annals of the Association of American Geographers, 70(2), 207–225.CrossRefGoogle Scholar
  63. Stefanidis, A., Cotnoir, A., Croitoru, A., Crooks, A., Rice, M., & Radzikowski, J. (2013). Demarcating new boundaries: Mapping virtual polycentric communities through social media content. Cartography and Geographic Information Science, 40(2), 116–129.CrossRefGoogle Scholar
  64. Sui, D. (2008). The wikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Computers, Environment and Urban Systems, 32(1), 1–5.CrossRefGoogle Scholar
  65. Sullivan, G. (2014). How facebook and twitter control what you see about Ferguson. The Washington Post. 19 August. http://www.washingtonpost.com/news/morning-mix/wp/2014/08/19/how-facebook-and-twitter-control-what-you-see-about-ferguson/.
  66. Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of twitter networks. Social Networks, 34(1), 73–81.CrossRefGoogle Scholar
  67. Warf, B., & Arias, S. (2008). The spatial turn: Interdisciplinary perspectives. Abingdon: Taylor & Francis.Google Scholar
  68. Widener, M. J., & Li, W. (2014). Using geolocated twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Applied Geography, 54, 189–197.CrossRefGoogle Scholar
  69. Wilson, M. W. (2015). Morgan freeman is dead and other big data stories. Cultural Geographies, 22(2), 345–349.CrossRefGoogle Scholar
  70. Wyly, E. (2009). Strategic positivism. The Professional Geographer, 61(3), 310–322.CrossRefGoogle Scholar
  71. Wyly, E. (2011). Positively radical. International Journal of Urban and Regional Research, 35(5), 889–912.Google Scholar
  72. Wyly, E. (2014). The new quantitative revolution. Dialogues in Human Geography, 4(1), 26–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations