Advertisement

GeoJournal

, Volume 80, Issue 4, pp 587–605 | Cite as

Assessing the impact of demographic characteristics on spatial error in volunteered geographic information features

  • William F. Mullen
  • Steven P. Jackson
  • Arie Croitoru
  • Andrew Crooks
  • Anthony Stefanidis
  • Peggy Agouris
Article

Abstract

The proliferation of volunteered geographic information (VGI), such as OpenStreetMap (OSM) enabled by technological advancements, has led to large volumes of user-generated geographical content. While this data is becoming widely used, the understanding of the quality characteristics of such data is still largely unexplored. An open research question is the relationship between demographic indicators and VGI quality. While earlier studies have suggested a potential relationship between VGI quality and population density or socio-economic characteristics of an area, such relationships have not been rigorously explored, and mainly remained qualitative in nature. This paper addresses this gap by quantifying the relationship between demographic properties of a given area and the quality of VGI contributions. We study specifically the demographic characteristics of the mapped area and its relation to two dimensions of spatial data quality, namely positional accuracy and completeness of the corresponding VGI contributions with respect to OSM using the Denver (Colorado, US) area as a case study. We use non-spatial and spatial analysis techniques to identify potential associations among demographics data and the distribution of positional and completeness errors found within VGI data. Generally, the results of our study show a lack of statistically significant support for the assumption that demographic properties affect the positional accuracy or completeness of VGI. While this research is focused on a specific area, our results showcase the complex nature of the relationship between VGI quality and demographics, and highlights the need for a better understanding of it. By doing so, we add to the debate of how demographics impact on the quality of VGI data and lays the foundation to further work.

Keywords

Volunteered geographic information OpenStreetMap Spatial analysis Spatial data quality Demographics 

References

  1. Al-Bakri, M., & Fairbairn, D. (2010), Assessing the accuracy of ‘Crowdsourced’ data and its integration with official spatial data sets. In Proceedings of the 9th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Leicester, UK, pp. 317–320.Google Scholar
  2. Andrews, D. T., Chen, L., Wentzell, P. D., & Hamilton, D. C. (1996). Comments on the relationship between principal components analysis and weighted linear regression for bivariate data sets. Chemometrics and Intelligent Laboratory Systems, 34(2), 231–244.CrossRefGoogle Scholar
  3. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.CrossRefGoogle Scholar
  4. Aske, D., Corman, R. R., & Marston, C. (2011). Education policy and school segregation: A study of the Denver metropolitan region. Journal of Legal, Ethical & Regulatory Issues, 14(2), 27–35.Google Scholar
  5. Braun, M. T., & Oswald, F. L. (2011). Exploratory regression analysis: A tool for selecting models and determining predictor importance. Behavior Research Methods, 43(2), 331–339.CrossRefGoogle Scholar
  6. Brown, G., & Pullar, D. (2012). An evaluation of the use of points versus polygons in public participation geographic information systems using quasi-experimental design and Monte Carlo simulation. International Journal of Geographical Information Science, 26(2), 231–246.CrossRefGoogle Scholar
  7. Burt, J., Barber, G., & Rigby, R. (2009). Elementary statistics for geographers (3rd ed.). New York, NY: Guilford Press.Google Scholar
  8. Cipeluch, B., Jacob, R., Winstanly, A., & Mooney, P. (2010). Comparison of the accuracy of OpenStreetMap for Ireland with Google Maps and Bing Maps. In Proceedings of the 9th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Leicester, UK, pp. 337–340.Google Scholar
  9. Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.CrossRefGoogle Scholar
  10. Coleman, D. J., Georgiadou, Y., & Labonte, J. (2009). Volunteered geographic information: The nature and motivation of produsers. International Journal of Spatial Data Infrastructures Research, 4(1), 332–358.Google Scholar
  11. Crutcher, M., & Zook, M. (2009). Placemarks and waterlines: Racialized cyberscapes in Post-Katrina Google Earth. Geoforum, 40(4), 523–534.CrossRefGoogle Scholar
  12. Davis, J. (1973). Statistics and data analysis in geology. New York, NY: Wiley.Google Scholar
  13. de Smith, M. J., Goodchild, M. F., & Longley, P. A. (2007). Geospatial analysis: A comprehensive guide to principles, techniques and software tools (2nd ed.). Winchelsea, UK: The Winchelsea Press.Google Scholar
  14. Elwood, S. (2008). Volunteered geographic information: Key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72(3–4), 133–135.CrossRefGoogle Scholar
  15. Elwood, S. (2009). Geographic information science: Emerging research on the societal implications of the geographical web. Progress in Human Geography, 34(3), 349–357.CrossRefGoogle Scholar
  16. Elwood, S., Goodchild, M. F., & Sui, D. (2013). Prospects for VGI research and the emerging fourth paradigm. In D. Sui, S. Elwood, & M. F. Goodchild (Eds.), Crowdsourcing geographic knowledge: Volunteered geographic information (VGI) in theory and practice (pp. 361–375). New York, NY: Springer.CrossRefGoogle Scholar
  17. Fairbairn, D., & Al-Bakri, M. (2013). Using geometric properties to evaluate possible integration of authoritative and volunteered geographic information. ISPRS International Journal of Geo-Information, 2(2), 349–370.CrossRefGoogle Scholar
  18. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression & associated techniques. Chichester, UK: Wiley.Google Scholar
  19. Ghose, R., & Elwood, S. (2003). Public participation GIS and local political context: Propositions and research directions. URISA Journal, 15(2), 17–22.Google Scholar
  20. Girres, J.-F., & Touya, G. (2010). Quality assessment of the French OpenStreetMap dataset. Transactions in GIS, 14(4), 435–459.CrossRefGoogle Scholar
  21. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  22. Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial Statistics, 1(1), 110–120.CrossRefGoogle Scholar
  23. Graham, S. D. (2005). Software-sorted geographies. Progress in Human Geography, 29(5), 562–580.CrossRefGoogle Scholar
  24. Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning B, 37(4), 682–703.CrossRefGoogle Scholar
  25. Haklay, M. M., Basiouka, S., Antoniou, V., & Ather, A. (2010). How many volunteers does it take to map an area well? The validity of Linus’ Law to volunteered geographic information. The Cartographic Journal, 47(4), 315–322.CrossRefGoogle Scholar
  26. Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRefGoogle Scholar
  27. Hochmair, H. H., & Zielstra, D. (2013). Development and completeness of points of interest in free and proprietary data sets: A Florida case study. Creating the GISociety—Conference proceedings (pp. 39–48). Austria: Salzburg.Google Scholar
  28. Holloway, T., Bozicevic, M., & Börner, K. (2007). Analyzing and visualizing the semantic coverage of Wikipedia and its authors. Complexity, 12(3), 30–40.CrossRefGoogle Scholar
  29. Huberty, C. J. (1984). Issues in the use and interpretation of discriminant analysis. Psychological Bulletin, 95(1), 156–171.CrossRefGoogle Scholar
  30. Hudson-Smith, A., Crooks, A. T., Gibin, M., Milton, R., & Batty, M. (2009). Neogeography and Web 2.0: Concepts, tools and applications. Journal of Location Based Services, 3(2), 118–145.Google Scholar
  31. Jackson, S. P., Mullen, W., Agouris, P., Crooks, A. T., Croitoru, A., & Stefanidis, A. (2013). Assessing completeness and spatial error of features in volunteered geographic information. ISPRS International Journal of Geo-Information, 2(2), 507–530.CrossRefGoogle Scholar
  32. James, F. J. (1986). A new generalized “Exposure-Based” segregation index demonstration in Denver and Houston. Sociological Methods & Research, 14(3), 301–316.CrossRefGoogle Scholar
  33. Kent, J. D., & Capello, H. T. (2013). Spatial patterns and demographic indicators of effective social media content during the Horsethief Canyon fire of 2012. Cartography and Geographic Information Science, 40(2), 78–89.CrossRefGoogle Scholar
  34. Koukoletsos, T., Haklay, M., & Ellul, C. (2012). Assessing data completeness of VGI through an automated matching procedure for linear data. Transactions in GIS, 16(4), 477–498.CrossRefGoogle Scholar
  35. Kuznetzov, S. (2006). Motivations of contributors to Wikipedia. ACM SIGCAS Computers and Society, 35(2), 1–7.CrossRefGoogle Scholar
  36. Li, L., Goodchild, M. F., & Xu, B. (2013). ‘Spatial. Temporal, and socioeconomic patterns in the use of Twitter and Flickr’, cartography and geographic information science, 40(2), 61–77.CrossRefGoogle Scholar
  37. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2010). Geographical information systems and science (3rd ed.). New York, NY: Wiley.Google Scholar
  38. Longley, P. A., & Singleton, A. D. (2009). Linking social deprivation and digital exclusion in England. Urban Studies, 46(7), 1275–1298.CrossRefGoogle Scholar
  39. McKechnie, J. (1983). Webster’s new twentieth century dictionary (2nd ed.). New York, NY: Simon and Schuster.Google Scholar
  40. Mooney, P., & Corcoran, P. (2012). Characteristics of heavily edited objects in OpenStreetMap. Future Internet, 4(1), 285–305.CrossRefGoogle Scholar
  41. Mooney, P., Corcoran, P., & Winstanley, A. (2010). Towards quality metrics for OpenStreetMap. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, San Jose, CA, pp. 514–517.Google Scholar
  42. Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23.CrossRefGoogle Scholar
  43. Neis, P., Zielstra, D., & Zipf, A. (2011). The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet, 4(1), 1–21.CrossRefGoogle Scholar
  44. Neis, P., & Zipf, A. (2012). Analyzing the contributor activity of a volunteered geographic information project—The case of OpenStreetMap. ISPRS International Journal of Geo-Information, 1(2), 146–165.CrossRefGoogle Scholar
  45. Nov, O., Arazy, O., & Anderson, D. (2011). Technology-mediated citizen science participation: A motivational model. In Proceedings of the 5th international AAAI conference on weblogs and social media, Barcelona, Spain.Google Scholar
  46. OpenStreetMap. (2013a). Tag: Amenity = school. http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dschool. Accessed on 17 May 2013.
  47. OpenStreetMap. (2013b). USGS geographic names information system. http://wiki.openstreetmap.org/wiki/GNIS. Accessed on 17 May 2013.
  48. Oreg, S., & Nov, O. (2008). Exploring motivations for contributing to open source initiatives: The roles of contribution context and personal values. Computers in Human Behavior, 24(5), 2055–2073.CrossRefGoogle Scholar
  49. Over, M., Schilling, A., Neubauer, S., & Zipf, A. (2010). Generating Web-based 3D city models from OpenStreetMap: The current situation in Germany. Computers, Environment and Urban Systems, 34(6), 496–507.CrossRefGoogle Scholar
  50. Poore, B. S., Wolf, E. B., Korris, E. M., Walter, J. L., & Matthews, G. D. (2012). Structures data collection for the national map using volunteered geographic information. U.S. Geological Survey open-file report 2012–1209, Reston, VA. http://pubs.usgs.gov/of/2012/1209.
  51. Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine internet usage: The role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999–1007.CrossRefGoogle Scholar
  52. Press, S. J., & Wilson, S. (1978). Choosing between logistic regression and discriminant analysis. Journal of the American Statistical Association, 73(364), 699–705.CrossRefGoogle Scholar
  53. Schmidt, M., & Klettner, S. (2013). Gender and experience-related motivators for contributing to OpenStreetMap. Online proceedings of the international workshop on action and interaction in volunteered geographic information (ACTIVITY) at the 16th AGILE conference on geographic information science, Leuven, Belgium.Google Scholar
  54. Sieber, R. (2006). Public participation geographic information systems: A literature review and framework. Annals of the Association of American Geographers, 96(3), 491–507.CrossRefGoogle Scholar
  55. Steinmann, R., Grochenig, S., Rehrl, K., & Brunauer, R. (2013). Contribution profiles of voluntary mappers in OpenStreetMap. Online proceedings of the international workshop on action and interaction in volunteered geographic information (ACTIVITY) at the 16th AGILE conference on geographic information science, Leuven, Belgium.Google Scholar
  56. Sui, D. (2008). The wikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Computers, Environment and Urban Systems, 32(1), 1–5.Google Scholar
  57. The National Map. (2014). http://nationalmap.gov/TheNationalMapCorps/index.html. Accessed on 23 May 2014.
  58. Tulloch, D. L. (2008). Is VGI participation? From vernal pools to video games. GeoJournal, 72(3–4), 161–171.CrossRefGoogle Scholar
  59. U.S. Census Bureau. (2012). Geographic definitions. http://www.census.gov/geo/www/geo_defn.html#CensusTract. Accessed on 17 May 2013.
  60. Vickery, G., & Wunsch-Vincent, S. (2007). Participative web and user-created content: Web 2.0 wikis and social networking. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  61. Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187.CrossRefGoogle Scholar
  62. Wong, D. W. S., & Lee, J. (2005). Statistical analysis of geographic information with ArcView GIS and ArcGIS. Hoboken, NJ: Wiley.Google Scholar
  63. Zielstra, D., & Zipf, A. (2010). A comparative study of proprietary geodata and volunteered geographic information for Germany. In Proceedings of the 13th AGILE international conference on geographic information science, Guimarães, Portugal, pp. 1–15.Google Scholar
  64. Zook, M. A., & Graham, M. (2007a). The creative reconstruction of the internet: Google and the privatization of cyberspace and DigiPlace. Geoforum, 38(6), 1322–1343.CrossRefGoogle Scholar
  65. Zook, M. A., & Graham, M. (2007b). Mapping DigiPlace: Geocoded internet data and the representation of place. Environment and Planning B, 34(3), 466–482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  • William F. Mullen
    • 1
  • Steven P. Jackson
    • 1
  • Arie Croitoru
    • 1
  • Andrew Crooks
    • 2
  • Anthony Stefanidis
    • 1
  • Peggy Agouris
    • 1
  1. 1.Department of Geography and GeoInformation ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Computational Social Science, Krasnow Institute for Advanced StudyGeorge Mason UniversityFairfaxUSA

Personalised recommendations