GeoJournal

, Volume 79, Issue 2, pp 167–182 | Cite as

Modeling land suitability/capability using fuzzy evaluation

  • Fang Qiu
  • Bryan Chastain
  • Yuhong  Zhou
  • Caiyun Zhang
  • Harini Sridharan
Article

Abstract

Modeling the suitability of land to support specific land uses is an important and common GIS application. Three classic models, specifically pass/fail screening, graduated screening and weighted linear combination, are examined within a more general framework defined by fuzzy logic theory. The rationale underlying each model is explained using the concepts of fuzzy intersections, fuzzy unions and fuzzy averaging operations. These fuzzy implementations of the three classic models are then operationalized and used to analyze the distribution of kudzu in the conterminous United States. The fuzzy models achieve better predictive accuracies than their classic counterparts. By incorporating fuzzy suitability membership of environment factors in the modeling process, these fuzzy models also produce more informative fuzzy suitability maps. Through a defuzzification process, these fuzzy maps can be converted into conventional maps with clearly defined boundaries, suitable for use by individuals uncomfortable with fuzzy results.

Keywords

Suitability analysis Capability analysis Fuzzy evaluation 

References

  1. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.CrossRefGoogle Scholar
  2. Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34(4), 399–410.CrossRefGoogle Scholar
  3. Burrough, P. A., & McDonnell, R. A. (1998). Fuzzy sets and fuzzy geographical objects. In Principles of geographical information systems (pp. 265–292). Oxford, New York: Oxford University Press.Google Scholar
  4. Eastman, J. R. (1999). Multi-criteria evaluation and GIS. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems (pp. 493–502). New York: Wiley.Google Scholar
  5. Eastman, J. R., Jin, W., Kyem, P. A. K., & Toledano, J. (1995). Raster procedures for multi-criteria/multi-objective decisions. Photogrammetric Engineering and Remote Sensing, 61(5), 539–547.Google Scholar
  6. Eastman, J. R., Kyem, P. A. K., Toledano, J., & Jin, W. (1993). GIS and decision making. Geneva: UNITAR.Google Scholar
  7. FAO. (1976). A framework for land evaluation. FAO Soils Bulletin No. 32. Rome: UN Food and Agriculture Organization.Google Scholar
  8. FAO. (1982). Fourth meeting of the eastern African sub-committee for soil correlation and land evaluation. Arusha, Tanzania: UN Food and Agriculture Organization.Google Scholar
  9. Fritz, S., & See, L. (2005). Comparison of land cover maps using fuzzy agreement. International Journal of Geographical Information Science, 19(7), 787–807.CrossRefGoogle Scholar
  10. Hall, G. B., Wang, F., & Subaryono, J. (1992). Comparison of Boolean and fuzzy classification methods in land suitability analysis by using geographical information systems. Environment and Planning A, 24(4), 497–516.CrossRefGoogle Scholar
  11. Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184.CrossRefGoogle Scholar
  12. Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  13. Lukasiewicz, J. (1970). In defence of logistic. In L. Borkowski (Ed.), Selected works. London: North-Holland.Google Scholar
  14. Malczewski, J. (2000). On the use of weighted linear combination method in GIS: Common and best practice approaches. Transactions in GIS, 4(1), 5–22.CrossRefGoogle Scholar
  15. Malczewski, J. (2002). Fuzzy screening for land suitability analysis. Geographical and Environmental Modelling, 6(1), 27–39.CrossRefGoogle Scholar
  16. Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62(1), 3–65.CrossRefGoogle Scholar
  17. Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.CrossRefGoogle Scholar
  18. Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems, 7(2), 249–268.CrossRefGoogle Scholar
  19. McHarg, I. (1969). Design with nature. New York: Doubleday.Google Scholar
  20. Openshaw, S., & Openshaw, C. (1997). Fuzzy logic, fuzzy systems and soft computing. In Artificial intelligence in geography (pp. 268–308). Chichester, New York: Wiley.Google Scholar
  21. Saaty, T. J. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.Google Scholar
  22. Stoms, D. M., McDonald, J. M., & Davis, F. W. (2002). Fuzzy assessment of land suitability for scientific research reserves. Environmental Management, 29(4), 545–558.CrossRefGoogle Scholar
  23. Tomlin, D. (1990). Geographic information systems and cartographic modeling. New York: Prentice Hall.Google Scholar
  24. Wang, F., Hall, G. B., & Subaryono, J. (1990). Fuzzy information representation and processing in conventional GIS software: Database design and application. International Journal of Geographical Information Science, 4(3), 261–283.CrossRefGoogle Scholar
  25. Winberry, J. J. (1996). Kudzu: The vine that almost ate the south. In G. G. Bennett (Ed.), Snapshots of the Carolinas (pp. 99–102). Washington, DC: Association of American Geographers.Google Scholar
  26. Winberry, J. J., & Jones, D. M. (1973). Rise and decline of the “miracle vine” kudzu in the southern landscape. Southeastern Geographer, 13(3), 61–70.CrossRefGoogle Scholar
  27. Woodcock, C. E., & Gopal, S. (2000). Fuzzy set theory and thematic maps: Accuracy assessment and area estimation. International Journal of Geographical Information Science, 14(2), 153–172.CrossRefGoogle Scholar
  28. Yager, R. R. (1988). Ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183–190.CrossRefGoogle Scholar
  29. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fang Qiu
    • 1
  • Bryan Chastain
    • 1
  • Yuhong  Zhou
    • 1
  • Caiyun Zhang
    • 1
  • Harini Sridharan
    • 1
  1. 1.Geospatial Information SciencesUniversity of Texas at DallasRichardsonUSA

Personalised recommendations