GeoJournal

, Volume 78, Issue 2, pp 319–338 | Cite as

Harvesting ambient geospatial information from social media feeds

  • Anthony Stefanidis
  • Andrew Crooks
  • Jacek Radzikowski
Article

Abstract

Social media generated from many individuals is playing a greater role in our daily lives and provides a unique opportunity to gain valuable insight on information flow and social networking within a society. Through data collection and analysis of its content, it supports a greater mapping and understanding of the evolving human landscape. The information disseminated through such media represents a deviation from volunteered geography, in the sense that it is not geographic information per se. Nevertheless, the message often has geographic footprints, for example, in the form of locations from where the tweets originate, or references in their content to geographic entities. We argue that such data conveys ambient geospatial information, capturing for example, people’s references to locations that represent momentary social hotspots. In this paper we address a framework to harvest such ambient geospatial information, and resulting hybrid capabilities to analyze it to support situational awareness as it relates to human activities. We argue that this emergence of ambient geospatial analysis represents a second step in the evolution of geospatial data availability, following on the heels of volunteered geographical information.

Keywords

Social media Social network analysis Volunteered geographic information Ambient intelligence 

References

  1. Adar, E., & Huberman, B. A. (2000). Free riding on gnutella. First Monday, 5(10–2). Available at http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/792/701.
  2. Anderson, P. (2007). What is Web 2.0? Ideas, technologies and implications for education. Horizon scanning report, JISC technology and standards watch. Available at http://www.jisc.ac.uk/whatwedo/services/techwatch/reports/horizonscanning/hs0701.aspx.
  3. Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In Proceedings of the IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (pp. 492–499). Toronto, Canada.Google Scholar
  4. Backstrom, L., Sun, E., & Marlow, C. (2010). Find me if you can: Improving geographical prediction with social and spatial proximity. In WWW’10 (pp. 61–70). Raleigh, NC.Google Scholar
  5. Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.CrossRefGoogle Scholar
  6. Batty, M., Hudson-Smith, A., Milton, R., & Crooks, A. T. (2010). Map mashups, Web 2.0 and the GIS revolution. Annals of GIS, 16(1), 1–13.CrossRefGoogle Scholar
  7. BBC. (2011). iPhone tracks users’ movements. Available at http://www.bbc.co.uk/news/technology-13145562. Accessed on 27th, June, 2011.
  8. Becker, H., Naaman, M., & Gravano, L. (2010). Learning similarity metrics for event identification in social media. In Proceedings AAAI conference on weblogs and social media (pp. 291–300). New York, NY.Google Scholar
  9. Becker, H., Naaman, M., & Gravano, L. (2011). Beyond trending topics: Real-world event identification on twitter. In Proceedings AAAI conference on weblogs and social media (pp. 438–441). Barcelona, Spain.Google Scholar
  10. Biewald, L., & Janah, L. (2010). TechCrunch: Crowdsourcing disaster relief. Available at http://techcrunch.com/2010/08/21/crowdsourcing-disaster-relief/. Accessed on January, 26th, 2011.
  11. Bowman, C., Danzig, P., Hardy, D., Manber, U., & Schwartz, M. (1995). The harvest information discovery and access system. Computer Networks and ISDN Systems, 28(1–2), 119–125.CrossRefGoogle Scholar
  12. Brownstein, J. S., Freifeld, C. C., Reis, B. Y., & Mandl, K. D. (2008). Surveillance Sans Frontiéres: Internet-based emerging infectious disease intelligence and the Healthmap project. PLoS Medicine, 5(7), 1019–1024.CrossRefGoogle Scholar
  13. Buys, P., Dasgupta, S., Thomas, T. S., & Wheeler, D. (2009). Determinants of a digital divide in sub-Saharan Africa: A spatial econometric analysis of cell phone coverage. World Development, 37(9), 1494–1505.CrossRefGoogle Scholar
  14. Buyukkokten, O., Cho, J., Garcia-Molina, H., Gravano, L., & Shivakumar, N. (1999). Exploiting geographical location information of web pages. In Proceedings ACM SIGMOD workshop on web and databasesWebDB. Philadelphia, PA.Google Scholar
  15. Cheng, Z., Caverlee, J., & Lee, K. (2010). You are where you tweet: A content-based approach to geo-locating twitter users. In Proceedings ACM conference on information and knowledge management CIKM’10 (pp. 759–768). Toronto, Canada.Google Scholar
  16. Choudhury, M. D., Sundaraman, H., John, A., Seligmann, D. D., & Kelliher, A. (2010). Birds of a feather: Does user homophily impact information diffusion in social media?’ Available at http://arxiv.org/abs/1006.1702.
  17. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.CrossRefGoogle Scholar
  18. Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the World Wide Web. In International conference on tools with artificial intelligenceICTAI’97 (pp. 558–567). Newport Beach, CA.Google Scholar
  19. Corley, C. D., Cook, D. J., Mikler, A. R., & Singh, K. P. (2010). Text and structural data mining of influenza mentions in web and social media. International Journal of Environmental Research and Public Health, 7(2), 596–615.CrossRefGoogle Scholar
  20. Culotta, A. (2010). Towards detecting influenza epidemics by analyzing twitter messages. In Proceedings of the first workshop on social media analytics (pp. 115–122). Washington, DC.Google Scholar
  21. Dave, K., Bhatt, R., & Varma, V. (2010). Modeling action cascades in social networks. In Proceedings of the fifth international AAAI conference on weblogs and social media (pp. 121–128). Barcelona, Spain.Google Scholar
  22. Elwood, S. (2010). Geographic information science: Emerging research on the societal implications of the geospatial web. Progress in Human Geography, 34(3), 349–357.CrossRefGoogle Scholar
  23. Eriksson, B., Barford, P., Sommers, J., & Nowak, R. (2010). A learning-based approach for IP geolocation. In: A. Krishnamurthy, B. Plattner (Eds.), Passive and active measurement, lecture notes in computer science (Vol. 6032, pp. 171–180). Berlin, Germany: Springer.Google Scholar
  24. Financial Times. (2010). Coke sees ‘phenomenal’ result from twitter ads. Financial Times (June, 25th). Available at http://www.ft.com/cms/s/0/6726ef4e-805a-11df-8b9e-00144feabdc0.html#axzz1OoiRiNWO. Accessed on 27th, June, 2011.
  25. Firedland, G., Choi, J., Lei, H., & Janin A. (2011). Multimodal location estimation on flickr videos. In Proceedings of MultiMedia’11. Scottsdale, AZ.Google Scholar
  26. Friedland, G., & Sommer, R. (2010). Cybercasing the joint: On the privacy implications of geotagging. In Proceedings of the fifth USENIX workshop on hot topics in security (HotSec 10). Washington, DC.Google Scholar
  27. Goodchild, M. F. (2007a). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  28. Goodchild, M. F. (2007b). Citizens as voluntary sensors: Spatial data infrastructure in the world of Web 2.0. International Journal of Spatial Data Infrastructures Research, 2(1), 24–32.Google Scholar
  29. Graham, P. (2007). Web 2.0. Available at http://www.paulgraham.com/web20.html. Accessed on May 1st, 2008.
  30. Gravano, L., Hatzivassiloglou, V., & R. Lichtenstein. (2003). Categorizing web queries according to geographical locality. In Proceedings of the conference on information and knowledge managementCIKM (pp. 325–333). New Orleans, LA.Google Scholar
  31. Guardian. (2011). Assault on Zawiyah. The Guardian (March 8th). Available at http://www.guardian.co.uk/world/2011/mar/08/arab-and-middle-east-protests-libya. Accessed on 27th, June, 2011.
  32. Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning B, 37(4), 682–703.CrossRefGoogle Scholar
  33. Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the GeoWeb. Geography Compass, 2(6), 2011–2039.CrossRefGoogle Scholar
  34. Hecht, B., Hong, L., Suh, B., & Chi, E. (2011). Tweets from Justin Bieber’s heart: The dynamics of the ‘location’ field in user profiles. In Proceedings of the ACM CHI conference on human factors in computing systems. Vancouver, Canada.Google Scholar
  35. Howe, J. (2006). The rise of crowdsourcing. Wired 14.06, 161–165. Available at http://www.wired.com/wired/archive/14.06/crowds.html. Accessed on September 25th, 2008.
  36. Huberman, B. A., Romero, D. M., & Wu, F. (2009). Social networks that matter: Twitter under the microscope. First Monday, 14, 1–5.Google Scholar
  37. Hudson-Smith, A., Batty, M., Crooks, A. T., & Milton, R. (2009a). Mapping tools for the masses: Web 2.0 and crowdsourcing. Social Science Computer Review, 27(4), 524–538.CrossRefGoogle Scholar
  38. Hudson-Smith, A., & Crooks, A. T. (2009). The renaissance of geographic information: Neogeography, gaming and second life. In H. Lin & M. Batty (Eds.), Virtual geographic environments (pp. 25–36). Beijing: Science Press.Google Scholar
  39. Hudson-Smith, A., Crooks, A. T., Gibin, M., Milton, R., & Batty, M. (2009b). Neogeography and Web 2.0: Concepts, tools and applications. Journal of Location Based Services, 3(2), 118–145.CrossRefGoogle Scholar
  40. Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. In Joint 9th WEBKDD and 1st SNA-KDD workshop’07 (pp. 56–65). San Jose, CA.Google Scholar
  41. Keen, A. (2007). The cult of the amateur: How today’s internet is killing our culture. New York, NY: Currency.Google Scholar
  42. Kennedy, L., Naaman, M., Ahern, S., Nair, R., & Rattenbury, T. (2007). How flickr helps us make sense of the world: Context and content in community-contributed media collections. In The proceedings of multiMedia’07 (pp. 631–640). Augsburg, Germany.Google Scholar
  43. Kimura, M., Saito, K., & Motoda, H. (2010). Extracting influential nodes on a social networks for information diffusion. Data Mining and Knowledge Discovery, 20(1), 70–97.CrossRefGoogle Scholar
  44. Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. SIGKDD Explorations, 2(1), 1–15.CrossRefGoogle Scholar
  45. Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is twitter, a social network or a news media? In WWW’10 (pp. 591–600). Raleigh, NC.Google Scholar
  46. Longley, P. A., Ashby, D. I., Webber, R., & Li, C. (2006). Geodemographic classifications, the digital divide and understanding customer take-up of new technologies. BT Technology Journal, 24(3), 67–74.CrossRefGoogle Scholar
  47. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2010). Geographical information systems and science (3rd ed.). New York, NY: Wiley.Google Scholar
  48. Ludford, P. J., Priedhorsky, R., Reily, K., & Terveen, L. G. (2007). Capturing, sharing, and using local place information. In Proceedings of CHI ‘07 (pp. 1235–1244). San Jose, CA.Google Scholar
  49. MacEachren, A. M., Robinson, A. C., Jaiswal, A., Pezanowski, S., Savelyev, A., Blanford, J., & Mitra, P. (2011). Geo-twitter analytics: Applications in crisis management. In Proceedings of the 25th international cartographic conference. Paris, France.Google Scholar
  50. McPherson, M., Smith-Lovin, L., & Cook, J. C. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.CrossRefGoogle Scholar
  51. Naaman, M., Becker, H., & Gravano, L. (2011). Hip and trendy: Characterizing emerging trends on twitter. Journal of the American Society for Information Science and Technology, 62(5), 902–918.CrossRefGoogle Scholar
  52. National Audubon Society. (2011). Christmas bird count. Available at http://birds.audubon.org/christmas-bird-count. Accessed on 26th April, 2011.
  53. Newman, M. E. J. (2005). Power laws, pareto distributions and Zipf’s Law. Contemporary Physics 46(5), 323–351.Google Scholar
  54. Newsweek. (2009). A twitter timeline of the iran election. Newsweek. Available at http://www.newsweek.com/2009/06/25/a-twitter-timeline-of-the-iran-election.html. Accessed on April 27th, 2011.
  55. Norheim-Hagtun, I., & Meier, P. (2010). Crowdsourcing for crisis mapping in Haiti. Innovations: Technology Governance, 5(4), 81–89.CrossRefGoogle Scholar
  56. O’Reilly, T. (2005). What is Web 2.0: Design patterns and business models for the next generation of software. Available at http://www.oreillynet.com/lpt/a/6228. Accessed on February 20th, 2009.
  57. Parry, M. (2011). Academics join relief efforts around the world as crisis mappers. The Chronicle of Higher Education (March, 27th). Available at http://chronicle.com/article/Academics-Join-Relief-Efforts/126912/#. Accessed on 27th June, 2011.
  58. Petrovic, S., Osborne, M., & Lavrenko, V. (2010). Streaming first story detection with application to twitter. In: Human language technologiesHLT’10 (pp. 181–189).Google Scholar
  59. Poese, I., Uhlig, S., Kaafar, M. A., Donnet, B., & Gueye, B. (2011). IP geolocation databases: Unreliable? Computer Communication Review, 4(2), 53–56.CrossRefGoogle Scholar
  60. Polgreen, P. M., Chen, Y., Pennock, D. M., & Nelson, F. D. (2008). Using internet searches for influenza surveillance. Clinical Infectious Diseases, 47(11), 1443–1448.CrossRefGoogle Scholar
  61. Popescu, A., & Grefenstette, G. (2010). Mining user home location and gender from flickr tags. In Proceedings international conference on weblogs and social mediaICWSM’10 (pp. 307–310). Washington, DC.Google Scholar
  62. Rattenbury, T., & Naaman, M. (2009). Methods for extracting place semantics from flickr tags. ACM Transactions on the Web, 3(1), 1–30.CrossRefGoogle Scholar
  63. Ritterman, J., Osborne, M., & Klein, E. (2009). Using prediction markets and twitter to predict a swine flu pandemic. In F. M. Carrero, J. M. Gómez, B. Monsalve, E. Puertas & J. C. Cortizo (Eds.), 1st international workshop on mining social media (pp. 9–18). Sevilla, Spain.Google Scholar
  64. Russell, M. A. (2011a). Mining the social web. O’Reilly Media.Google Scholar
  65. Russell, M. A. (2011b). 21 recipes for mining twitter. O’Reilly Media.Google Scholar
  66. Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes twitter users: Real-time event detection by social sensors. In WWW ‘10, Raleigh, NC.Google Scholar
  67. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. NewYork: McGraw-Hill.Google Scholar
  68. Sankaranarayanan, J., Samet, H., Teitler, B., Lieberman, M., & Sperling, J. (2009). TwitterStand: News in tweets. In ACM GIS 2009 (pp. 42–51). Seattle, WA.Google Scholar
  69. Schindler, G., Brown, M., & Szeliski, R. (2007). City-scale location recognition. In IEEE conference on computer vision and pattern recognition (CVPR’07) (pp. 1–7). Minneapolis, MN.Google Scholar
  70. Shi, X., Tseng, B., & Adamic, L. A. (2007). Looking at the Blogosphere topology through different lenses. In Proceedings of the international conference on weblogs and social media (ICWSM 2007). Boulder, CO.Google Scholar
  71. Singla, P., & Richardson, M. (2008). Yes, there is a correlation-from social networks to personal behavior on the web. In WWW’08 (pp. 655–664). Beijing, PRC.Google Scholar
  72. Standby Task Force. (2011). The security and ethics of live mapping in repressive regimes and hostile environments. Available at http://blog.standbytaskforce.com/?p=259. Accessed on 27th, June, 2011.
  73. Tang, J., Sun, J., Wang, C., & Yang, Z. (2009). Social influence analysis in large-scale networks. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 807–816). Paris, France.Google Scholar
  74. TomTom. (2011). This is what we really do with your data. Available at http://www.tomtom.com/page/facts. Accessed on 27th June, 2011.
  75. Wall Street Journal. (2011). Where the young and tech-savvy go? Wall Street Journal (May 19). Available at http://blogs.wsj.com/digits/2011/05/19/a-week-on-foursquare/. Accessed on 27th June, 2011.
  76. Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public opinion. Journal of Consumer Research, 34(4), 441–458.CrossRefGoogle Scholar
  77. Weng, J., & Lee, B.-S. (2011). Event detection in twitter. In Proceedings of the AAAI conference on weblogs and social media (ICWSM-11). Barcelona, Spain.Google Scholar
  78. Weng, J., Lim, E.-P., Jiang, J., & He, Q. (2010). TwitterRank: Finding topic-sensitive influential twitters. In Proceedings of the web search and data mining (WSDM’10). New York, NY.Google Scholar
  79. Yardi, S., & Boyd, D. (2010). Tweeting for the town square: Measuring geographic local networks. In Proceedings of fourth international AAAI conference on weblogs and social media (pp. 194–201). Washington, DC.Google Scholar
  80. Zhang, J., Ackerman, M.S., & Adamic, L. (2007). Expertise networks in online communities: Structure and algorithms. In Proceedings of the 16th international conference on World Wide Web (pp. 221–230). Banff, Canada.Google Scholar
  81. Zhang, W., & Kosecka, J. (2006). Image based localization in Urban environments. In International symposium on 3D data processing, visualization, and transmission (pp. 33–40). Chapel Hill, NC.Google Scholar
  82. Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered geographic information and crowdsourcing disaster relief: A case study of the Haitian earthquake. World Medical and Health Policy, 2(2), 7–33.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anthony Stefanidis
    • 1
  • Andrew Crooks
    • 2
  • Jacek Radzikowski
    • 1
  1. 1.Center for Geospatial Intelligence and Department of Geography and Geoinformation ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Computational Social ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations