Advertisement

GeoJournal

, Volume 77, Issue 1, pp 47–62 | Cite as

Integrating publicly available web mapping tools for cartographic visualization of community food insecurity: a prototype

  • Myunghwa Hwang
  • Marissa Smith
Article

Abstract

Spatial profiling of community food security data can help the targeting of geographic areas and populations most vulnerable to food insecurity. While multiple poverty mapping systems support spatial profiling, they often lack capabilities to disseminate mapping results to a wide range of audiences and to spatially link qualitative data to quantitative analysis. To address these limitations, this study presents a web mapping framework which integrates a variety of publicly available software tools to enable spatial exploration of both quantitative and qualitative data. Specifically, our framework allows online choropleth mapping and thematic data exploration through a mixture of free mapping Application Programming Interfaces (APIs) and open source software tools for spatial data processing and desktop-like user interfaces. The study demonstrates this framework by developing a web prototype for informing food insecurity issues in Bogotá, Colombia. The prototype implementation reveals that the proposed framework facilitates the development of scalable and functionally-extensible mapping systems and the identification of community-specific food insecurity problems (e.g., food kitchens inaccessible from workplaces of low-income residents). This suggests that web-based cartographic visualization using publicly available software tools can be useful for spatial examination of community food insecurity as well as for cost-effective distribution of the resulting map information.

Keywords

Community food security Web mapping Spatial data exploration Choropleth mapping Free or open source software Bogotá 

Notes

Acknowledgments

We would like to thank Dr. Luc Anselin, Dr. Julia Koschinsky, and Charles R. Schmidt of the GeoDa Center for Geospatial Analysis and Computation at Arizona State University for their support and feedback. Natalia Maria Rojas Tarazona’s research assistance, especially in regards to local data collection in Bogotá, is also gratefully acknowledged.

References

  1. Barret, C. B. (2002). Food security and food assistance programs. In B. Gardner, G. Rausser (Eds.), Handbook of agricultural economics. Amsterdam: Elsevier.Google Scholar
  2. Bedi, T., Coudouel, A., & Simler, K. (2007a). Increasing the impacts of poverty maps. In: T. Bedi, A. Coudouel, K. Simler (Eds.), More than a pretty picture: Using poverty maps to design better policies and interventions. Cleveland: World Bank Publications.Google Scholar
  3. Bedi, T., Coudouel, A., & Simler, K. (2007b). Maps for policy making: Beyond the obvious targeting applications. In T. Bedi, A. Coudouel, K. Simler (Eds.), More than a pretty picture: using poverty maps to design better policies and interventions. Cleveland: World Bank Publications.Google Scholar
  4. Benson, T., Epprecht, M., & Minot, N. (2007). Mapping where the poor live. In 2020 Focus Briefs on the World’s Poor and Hungry People, Food Policy Research Institute.Google Scholar
  5. Bigman, D., & Fofack, H. (2000). Geographical targeting for poverty alleviation: An introduction to the special issue. The World Bank Economic Review, 14(1), 129–145.Google Scholar
  6. Chow, T. E. (2008). The potential of Maps APIs for Internet GIS applications. Transactions in GIS, 12(2), 179–191.CrossRefGoogle Scholar
  7. City Government of Bogotá. (2008). Alcalde presentó ‘Bogotá bien alimentada’. http://samuelalcalde.gov.co/index.php?option=com_content&view=article&id=595.
  8. City Government of Bogotá. (2010). Calidad y atención en el nuevo comedor comunitario de la localidad de Kennedy. http://samuelalcalde.gov.co/index.php?option=com_content&view=article&id=7433.
  9. Cohen, B. (2002). Community food security assessment toolkit (E-FAN-02-013). Washington, DC: United States Department of Agriculture, Economic Research Service.Google Scholar
  10. Crockford, D. (2006). The application/JSON media type for JavaScript Object Notation (JSON).Google Scholar
  11. DANE. (2007). Encuesta Calidad de Vida Bogotá 2007: Resultados preliminares, colección información y estudios estratégicos. Bogotá. Colombia: Departamento Administrativo Nacional de Estadísticas.Google Scholar
  12. de Smith, M., Goodchild, M. F., & Longley, P. A. (2006). Geospatial analysis: A comprehensive guide to principles, techniques and software tools. Matador: Troubador Publishing Ltd.Google Scholar
  13. Donkin, A. J. M., Dowler, E. A., Stevenson, S. J., & Turner, S. A. (1999). Mapping access to food at a local level. British Food Journal, 101(7), 554–564.CrossRefGoogle Scholar
  14. Drèze, J., & Sen, A. (1989). Hunger and public action. New York: Oxford University Press.Google Scholar
  15. Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2002). Micro-level estimation of welfare. Policy research working paper (WPS 2911). Washington, DC: The World Bank.Google Scholar
  16. FAO. (2006). The state of food insecurity in the world. Italy: United Nations Food and Agriculture Organization.Google Scholar
  17. FAO. (2008). The state of food insecurity in the world. Italy: United Nations Food and Agriculture Organization.Google Scholar
  18. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (1999). Hypertext transfer protocol—HTTP/1.1.Google Scholar
  19. Fujii, T. (2007). To use or not to use? Poverty mapping in Cambodia. In T. Bedi, A. Coudouel, K. Simler (Eds.), More than a pretty picture: using poverty maps to design better policies and interventions. Cleveland: World Bank Publications.Google Scholar
  20. Gareau, S. E. (2004). The development of guidelines for implementing information technology to promote food security. Agriculture and Human Values, 21, 273–285.CrossRefGoogle Scholar
  21. Gibin, M., Singleton, A., Milton, R., Mateos, P., & Longley, P. (2008). An exploratory cartographic visualization of London through the Google Maps API. Applied Spatial Analysis, 1, 85–97.CrossRefGoogle Scholar
  22. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  23. Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the geoweb. Geography Compass, 2(6), 2011–2039.CrossRefGoogle Scholar
  24. Hamm, M., & Bellows, A. (2003). Community food security and nutrition educators. Journal of Nutrition Education and Behavior, 35(1), 37–43.CrossRefGoogle Scholar
  25. Hentschel, J., Lanjouw, J. O., Lanjouw, P., & Poggi, J. (1998). Combining census and survey data to study spatial dimensions of poverty. Policy research working paper series 1928. Washington DCGoogle Scholar
  26. Hill, L. L. (2008). Geoparsing. In: Kemp, K. K. (Eds.), Encyclopedia of geographic information science. SAGE.Google Scholar
  27. Hyman, G., Larrea, C., & Farrow, A. (2005). Methods, results, and policy implications of poverty and food security mapping assessments. Food Policy, 30, 453–460.CrossRefGoogle Scholar
  28. ICBF. (2006). Encuesta Nacional de la Situación Nutricional en Colombia 2005 (ENSIN). Bogotá, Colombia: Instituto Colombiano de Bienestar Familiar.Google Scholar
  29. IRC, WFP (2007) Una mirada a la población desplazada en ocho ciudades de Colombia: Respuesta institucional local, condiciones de vida y recomendaciones para su atención. Bogotá: International Red Cross and the World Food ProgrammeGoogle Scholar
  30. Kent, G. (2005). Freedom from want: The human right to adequate food. Washington, DC: Georgetown University Press.Google Scholar
  31. Liu, Z., Pierce, M., Fox, G., & Devadasan, N. (2007). Implementing a caching and tiling map server: A web 2.0 case study. In: Proceedings of the 2007 international symposium on collaborative technologies and systems (CTS 2007) Google Scholar
  32. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic information systems and science. London: Wiley.Google Scholar
  33. McCullum, C., Desjardins, E., Kraak, V.I., Ladipo, P., & Costello, H. (2005). Evidence-based strategies to build community food security. Journal of the American Dietetic Association, 105(2), 278–283.CrossRefGoogle Scholar
  34. Neutze, M. (2009). The strengths of SVG in web mapping: a real world comparison against Flash and ArcIMS. In Proceedings of the SVG Open 2009.Google Scholar
  35. Plewe, B. (2007). Web cartography in the United States. Cartography and Geographic Information Science, 34(2), 133–136.CrossRefGoogle Scholar
  36. PNG Development Group. (2003). Portable network graphics (PNG) specification.Google Scholar
  37. Pothukuchi, K. (2004). Community food assessment: a first step in planning for community food security. Journal of Planning Education and Research, 23, 356–377.CrossRefGoogle Scholar
  38. Rey, S. J. (2009). Show me the code: Spatial analysis and open source. Journal of Geographical Systems, 11(2), 191–207.CrossRefGoogle Scholar
  39. Rey, S. J., Anselin, L. (2007). PySAL: A python library of spatial analytical methods. The Review of Regional Studies, 37(1), 5–27.Google Scholar
  40. Robinson, D., & Coar, K. (2004). The common gateway interface (CGI) version 1.1.Google Scholar
  41. Rogers, B. L., Wirth, J., Macías, K., & Wilde, P. (2007). Mapping hunger: A report on mapping malnutrition prevalence in the Dominican Republic, Ecuador, and Panama. Working papers in food policy and nutrition, Friedman School of Nutrition Science and Policy, Tufts University Boston, Massachusetts, USA.Google Scholar
  42. Schmidt, C. R., & Dev, B. (2008). A scalable tile map service for distributing dynamic choropleth maps. Working paper, GeoDa Center for Geospaital Analysis and Computation, Arizona State University, USA.Google Scholar
  43. Sen, A. (1981). Poverty and famines: An essay on entitlement and deprivation. New York: Oxford University Press.Google Scholar
  44. Steiniger, S., & Bocher, E. (2009). An overview on current free and open source desktop GIS developments. International Journal of Geographical Information Science, 23(10), 1345–1370.CrossRefGoogle Scholar
  45. Talen, E., & Anselin, L. (1998). Assessing spatial equity: An evaluation of measures of accessibility to public playgrounds. Environment and Planning A, 30, 595–613.CrossRefGoogle Scholar
  46. Tovar Rodríguez, M. A. (2008). Por medio del cual se establecen unos lineamientos para el funcionamiento de los comedores comunitarios en el distrito y se dictan otras disposiciones. Draft agreement no. 527, Bogotá City Council.Google Scholar
  47. UN HABITAT, City government of Bogotá. (2008). Espacio público y derecho a la ciudad: La política de espacio público físico y la venta informal en Bogotá. Bogotá: Fundación Cultural Javeriana de Artes Gráficas.Google Scholar
  48. UNCHR. (2006). The state of the world’s refugees. Geneva: United Nations High Commissioner for Refugees.Google Scholar
  49. Unger, S., & Wooten, H. (2006). A food systems assessment for Oakland, CA: Toward a sustainable food plan. Oakland Mayor’s Office of Sustainablity.Google Scholar
  50. WFP. (2008). Mid-term evaluation of the Colombia protracted recovery and relief 10366.0. A report commissioned by the Office of Evaluation. New York: World Food Programme.Google Scholar
  51. Winne, M., Joseph, H., & Fisher, A. (1997). Community food security: A guide to concept, design, and implementation. The community food security coalition.Google Scholar
  52. Winslow, A. (2010). Spatial network analysis on large datasets with geodanet. A presentation in the 2010 annual meeting of the association of American geographers.Google Scholar
  53. Yang, C., Wong, D., Yang, R., Kafatos, M., & Li, Q. (2005) Performance-improving techniques in web-based GIS. International Journal of Geographical Information Science, 19(3), 319–342.CrossRefGoogle Scholar
  54. Yao, X., & Zou, L. (2008). Interoperable Internet Mapping—An open source approach. Cartography and Geographic Information Science 35(4), 279–293.CrossRefGoogle Scholar
  55. Zhao, H., & Shneiderman, B. (2005). Colour-coded pixel-based highly interactive web mapping for georeferenced data exploration. International Journal of Geographical Information Science 19(4), 413–428.CrossRefGoogle Scholar
  56. Zucker, D. F. (2007). What does AJAX mean for you? Interactions, 14(5), 10–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban PlanningArizona State UniversityTempeUSA

Personalised recommendations