GeoJournal

, Volume 77, Issue 1, pp 13–28 | Cite as

Using fuzzy cellular automata to access and simulate urban growth

  • Lefteris Mantelas
  • Poulicos Prastacos
  • Thomas Hatzichristos
  • Kostis Koutsopoulos
Original Paper

Abstract

In this paper we present a methodological framework designed to access urban growth dynamics and simulate urban growth. To do so, it utilizes the descriptive power of Fuzzy Logic and Fuzzy Algebra to map the effects of various parameters to the urban growth phenomenon and express them in comprehensible terms. Sensitive Sum, a new fuzzy operator is proposed to employ a parallel connection between the effects of separate variables while taking into account the (statistical) correlation between them. As a result, the model implements a reducible/extensible form of Knowledge Base which can include both data-driven and empirical rules and does not require certain variables/data to run. In order to simulate urban growth Cellular Automata techniques are incorporated that are enhanced by pseudo-agent behavior. The proposed model is applied in the broader Mesogia area in east Attica (Athens, Greece) for the period 2000–2007 during which urban land cover grew by 66% and appears to capture the urban growth dynamics occurred in a satisfactory way.

Keywords

Urban growth Cellular automata Fuzzy inference Sensitive sum operator Mesogia Athens 

References

  1. Assimakopoulos, D., Petrakis, M., Chrysoulakis, N., Stathopoulou, M., Karvounis, G., & Cartalis, C. (2009). Olympic games in Athens: Using earth observation for the assessment of changes and impacts for the natural and built environment. In Annual dragon 2 symposium, Barcelona, Spain, June 22–26.Google Scholar
  2. Barredo, J., Kasanko, M., McCormick, N., & Lavalle, C. (2003). Modeling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64(3), 145–160.CrossRefGoogle Scholar
  3. Benenson, I., & Kharbash, V. (2006). Geographic automata systems and the OBEUS software for their implementation, complex artificial environments (pp. 137–153). Berlin, Heidelberg: Springer.Google Scholar
  4. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Agreement as a special case of association. Discrete multivariate analysis (pp. 393–400). Cambridge, MA: MIT press.Google Scholar
  5. Blecic, Ι., Cecchini, A., Prastacos, P., Trunfio, G. A., & Verigos, E. (2004). Modelling urban dynamics with cellular automata: A model of the city of Heraclion. In 7th AGILE conference on geographic information science. Heraklion, Greece: University of Crete Press.Google Scholar
  6. Bone, C., Dragicevic, S., & Roberts, A. (2006). A fuzzy-constrained cellular automata model of forest insect infestation. Ecological Modelling, 192(1–2), 107–125.CrossRefGoogle Scholar
  7. Chen, M. Y., & Linkens, D. A. (2004). Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems, 142(2), 243–265.CrossRefGoogle Scholar
  8. Cheng, J., & Masser, I. (2003). Understanding urban growth system: Theories and methods. In 8th international conference on computers in urban planning and urban management, Sendai City, Japan.Google Scholar
  9. Chrysoulakis, N., Kamarianakis, Y., Farsari, Y., Diamandakis M., & Prastacos, P. (2004). Combining satellite and socioeconomic data for land use models estimation. In EARSeL workshop on remote sensing for developing countries, Cairo.Google Scholar
  10. Corgne, S., Hubert-Moy, L., Dezert, J., & Mercier, G. (2003). Land cover change prediction with a new theory of plausible and paradoxical reasoning. In 6th international conference of information fusion, Caimes, Queensland, Australia.Google Scholar
  11. Dietzel, Ch., & Clarke, K. C. (2004). Replication of spatio-temporal land use patterns at three levels of aggregation by an urban cellular automata. Lecture Notes in Computer Science, 3305, 523–532.Google Scholar
  12. Dietzel, Ch., Oguz, H., Hemphill, J. J., Clarke, K. C., & Gazulis, N. (2005). Diffusion and coalescence of the Houston metropolitan area: Evidence supporting a new urban theory. Environment and Planning B: Planning and Design, 32(2), 231–246.CrossRefGoogle Scholar
  13. Dragicevic, S., (2004). Coupling fuzzy sets theory and GIS-based cellular automata for land-use change modeling. In: Fuzzy information, IEEE annual meeting of the processing NAFIPS’04. (Vol. 1, pp. 203–207) Banff, Canada.Google Scholar
  14. Hagoort, M., Geertman, S., & Ottens, H. (2008). Spatial externalities, neighbourhood rules and CA land-use modelling. The Annals of Regional Science, 42(1), 39–56.CrossRefGoogle Scholar
  15. Hatzichristos, Th. (2001). GIS and fuzzy logic in spatial analysis. Educational notes, NTUA.Google Scholar
  16. Heikkila, E. J., Shen, T. Y., & Yang, K. Z. (2002). Fuzzy urban sets theory and application to Desakota regions in China. Environment & Planning B: Planning and Design, 29(2), 239–254.Google Scholar
  17. Jasper, V. (2009). Assessing the accuracy of changes in spatial explicit land use change models. In 12th AGILE international conference on geographic information science 2009, Hannover, Germany.Google Scholar
  18. Kim, J., Kang, Y., Hong, S., & Park, S. (2006). Extraction of spatial rules using a decision tree method: A case study in urban modeling. In B. Gabrys, R. J. Howlett, & L. C. Jain (Eds.), KES 2006, Part I, LNAI 4251 (pp. 203–211). Berlin, Heidelberg: Springer.Google Scholar
  19. Kirschfink, H., & Lieven, K. (1999). Basic tools for fuzzy modeling. Tutorial on Intelligent Traffic Management Models in Helsinki.Google Scholar
  20. Klopotek, M. A., & Wierzchon, S. T. (2000). Empirical models for the Dempster-Shafer theory. Belief Functions in Business Decisions, 62–112.Google Scholar
  21. Koutsopoulos, K. (2002). Geographic information systems and spatial analysis. Papasotiriou.Google Scholar
  22. Krawczyk, R. J. (2003). Architectural interpretation of cellular automata. In Poster presented at NKS 2003, Boston.Google Scholar
  23. Liu, Y., & Phinn, S. R. (2001). Developing a cellular automaton model of urban growth incorporating fuzzy set approaches. In Proceedings of the 6th international conference on GeoComputation, University of Queensland, Brisbane, Australia.Google Scholar
  24. Liu, Y., & Phinn, S. R. (2003). Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment and Urban Systems, 27(6), 637–658.CrossRefGoogle Scholar
  25. Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62(1), 3–65.CrossRefGoogle Scholar
  26. Miranda, V., Monteiro, C. (1999). Fuzzy inference applied to spatial load forecasting. In Power tech ‘99 conference, Budapest, Hungary.Google Scholar
  27. Morshed, A. (2002). Land use change dynamics: A dynamic spatial simulation. PhD Thesis.Google Scholar
  28. Mraz, M., & Zimic, N. (1999). Intelligent bush fire spread prediction using fuzzy cellular automata. Journal of Intelligent and Fuzzy Systems, 7(2), 203–207.Google Scholar
  29. Mulianat, I., & Hariadi, Y. (2004). Urban area development in stochastic cellular automata. Urban/Regional, EconWPA.Google Scholar
  30. Ness, G. D., & Low, M. M. (2000). Five cities: Modelling Asian urban population-environment dynamics (pp. 43–67). Oxford: Oxford University Press.Google Scholar
  31. Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2), 243–265.CrossRefGoogle Scholar
  32. Sasikala, K. R., & Petrou, M. (2001). Generalised fuzzy aggregation in estimating the risk of desertification of a burned forest. Fuzzy Sets and Systems, 118(1), 121–137.CrossRefGoogle Scholar
  33. Setnes, M., Babuska, R., & Verbruggen, H. B. (1998). Transparent fuzzy modelling. Human & Computer Studies, 49(2), 159–179.CrossRefGoogle Scholar
  34. Torrens, P. M. (2003). Automata based models of urban systems. Advanced Spatial Analysis, Chap. 4, pp. 61–79.Google Scholar
  35. Torrens, P. M., & Benenson, I. (2005). Geographic automata systems. Geographical Information Science, 19(4), 385–412.CrossRefGoogle Scholar
  36. Vancheri, Α., Giordano, P., Andrey, D., & Albeverio, S. (2004). A model for urban growth processes with continuum state cellular automata and related differential equations.Google Scholar
  37. Waddell, P., & Ulfarsson, G. G. (2004). Introduction to urban simulation: Design and development of operational models. Handbook in Transport, 5, 203–236.Google Scholar
  38. Witlox, F., & Derudder, B. (2005). Spatial decision-making using fuzzy decision tables: Theory, application and limitations. In F. E. Petry, V. B. Robinson & M. A. Cobb (Eds.), Fuzzy modeling with spatial information for geographic problems (pp. 253–274). New York: Springer-Verlag.CrossRefGoogle Scholar
  39. Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419–424.CrossRefGoogle Scholar
  40. Wu, F. (1996). A linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computer, Environment and Urban Systems, 20(6), 367–387.CrossRefGoogle Scholar
  41. Wu, F. (1998). Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. Journal of Environmental Management, 53(4), 293–308.CrossRefGoogle Scholar
  42. Yeh, A. G. O., & Li, X. (2003). Error propagation and model uncertainties of cellular automata in urban simulation with GIS. In 7th international conference on GeoComputation, University of Southampton, United Kingdom.Google Scholar
  43. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, (8):338–353.Google Scholar
  44. Zadeh, L. A. (1993). Fuzzy logic. Journal of Intelligent Information Systems, 2, 309–310.CrossRefGoogle Scholar
  45. Zadeh, A. L. (2006). Generalized theory of uncertainty (GTU). Computational Statistics & Data Analysis, 51(1), 15–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lefteris Mantelas
    • 1
  • Poulicos Prastacos
    • 1
  • Thomas Hatzichristos
    • 2
  • Kostis Koutsopoulos
    • 2
  1. 1.Foundation for Research and Technology, HellasInstitute of Applied and Computational MathematicsHeraclionGreece
  2. 2.Department of Geography and Regional PlanningNational Technical University of AthensZografouGreece

Personalised recommendations