, Volume 76, Issue 5, pp 561–575 | Cite as

Climate-change impacts on sagebrush habitat and West Nile virus transmission risk and conservation implications for greater sage-grouse

  • Anne Schrag
  • Sarah Konrad
  • Scott Miller
  • Brett Walker
  • Steve Forrest


Greater sage-grouse (Centrocercus urophasianus) are threatened by loss of sagebrush habitat and the spread of West Nile virus throughout much of their range in North America; yet, future impacts of climate change on these potential stressors have not been addressed. Here, we aim to quantify the potential impacts of climate change on the distribution of climatically suitable habitat for sagebrush and on transmission risk for West Nile virus in the eastern portion of the species’ range. We used Maxent to model the current and future climatically suitable habitat for two dominant sagebrush species in the study area, and we used a degree-day model to predict future West Nile virus transmission risk under likely climate-change scenarios. Our models suggest that areas with the highest future suitability for sagebrush habitat will be found in southwestern Wyoming and north-central Montana. The degree-day model suggests that greater sage-grouse in western portions of the study area, which are generally higher in elevation than where West Nile virus currently occurs, will see increasing risk of transmission in the future. We developed a spatially explicit map of suggested management actions based on our predictions that will aid in conservation of the species into the coming decades.


Climate Greater sage-grouse Northern Great Plains Northern Rockies Species distribution modeling West Nile virus 



Funding for the sagebrush distribution modeling was provided through a grant from Hewlett Packard to the World Wildlife Fund. Funding for the West Nile virus transmission risk modeling was provided by USDA specific cooperative agreement #5410-32000-014-15. We gratefully acknowledge the assistance of Karen Short, who provided LANDFIRE sagebrush data points. We thank the climate modeling groups that developed the GCMs for contributing their work through the WCRP CMIP3 for public use in ecosystem impacts research.


  1. Aldridge, C. L., & Boyce, M. S. (2008). Accounting for fitness: Combining survival and selection when assessing wildlife-habitat relationships. Israel Journal of Ecology and Evolution, 54, 389–419.CrossRefGoogle Scholar
  2. Aldridge, C. L., Nielsen, S. E., Beyer, H. L., Boyce, M. S., Connelly, J. W., Knick, S. T., et al. (2008). Range-wide patterns of greater sage-grouse persistence. Diversity and Distributions, 14, 983–994.CrossRefGoogle Scholar
  3. Baker, W. L. (2006). Fire and restoration of sagebrush ecosystems. Wildlife Society Bulletin, 34, 177–185.CrossRefGoogle Scholar
  4. Beale, C. M., Lennon, J. J., & Gimona, A. (2008). Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences, 105, 14908–14912.CrossRefGoogle Scholar
  5. Bradley, B. A. (2009). Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology, 15, 196–208.CrossRefGoogle Scholar
  6. Canadian Institute for Climate Studies. (2010). About predictions. Accessed 5 February 2010.
  7. Channell, R., & Lomolino, M. V. (2000). Dynamic biogeography and conservation of endangered species. Nature, 403, 84–86.CrossRefGoogle Scholar
  8. Clark, J. S., Grimm, E. C., Lynch, J., & Mueller, P. G. (2001). Effects of Holocene climate change on the C4 grassland/woodland boundary in the northern plains, USA. Ecology, 82, 620–636.Google Scholar
  9. Connelly, J. W., Knick, S. T., Schroeder, M. A., Stiver, S. J. (2004). Conservation assessment of greater sage-grouse and sagebrush habitats. Western Association of Fish and Wildlife Agencies. Unpublished Report. Cheyenne, Wyoming.Google Scholar
  10. Daly, C., Taylor, G. H., Gibson, W. P. (1997). The PRISM approach to mapping precipitation and temperature. 10th Conference on applied climatology, Reno, NV, American Meteorological Society, 10–12.Google Scholar
  11. Davis, C. T., Ebel, G. D., Lanciotti, R. S., Brault, A. C., Guzman, H., Siirin, M., et al. (2005). Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: Evidence for the emergence of a dominant genotype. Virology, 342, 252–265.CrossRefGoogle Scholar
  12. Doherty, M. K. (2007). Mosquito populations in the Powder River Basin, Wyoming: A comparison of natural, agricultural and effluent coal bed natural gas aquatic habitats. Master’s thesis, Montana State University, Bozeman, MT, 95 pp.Google Scholar
  13. Doherty, K. E., Naugle, D. E., Walker, B. L., & Graham, J. M. (2008). Greater sage-grouse winter habitat selection and energy development. Journal of Wildlife Management, 72, 187–195.CrossRefGoogle Scholar
  14. Evangelista, P. H., Stohlgren, T. J., Morisette, J. T., & Kumar, S. (2009). Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data. Remote Sensing, 1, 519–533.CrossRefGoogle Scholar
  15. Ferrier, S., Powell, G. V. N., Richardson, K. S., Manion, G., Overton, J. M., Allnutt, T. F., et al. (2004). Mapping more of terrestrial biodiversity for global conservation assessment. BioScience, 54, 1101–1109.CrossRefGoogle Scholar
  16. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
  17. Guo, Q., Taper, M., Schoenberger, M., & Brandle, J. (2005). Spatial-temporal population dynamics across species range: From centre to margin. Oikos, 108, 47–57.CrossRefGoogle Scholar
  18. Holloran, M. J., Heath, B. J., Lyon, A. G., Slater, S. J., Kuipers, J. L., & Anderson, S. H. (2005). Greater sage-grouse nesting habitat selection and success in Wyoming. Journal of Wildlife Management, 69, 349–638.CrossRefGoogle Scholar
  19. Howard, J. L. (1999). Artemisia tridentata subsp. wyomingensis. In: Fire Effects Information System, [online]. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Accessed 18 September 2008.
  20. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Accessed 31 December 2008.
  21. Knick, S. T., Dobkin, D. S., Rotenberry, J. T., Schroeder, M. A., Vander Haegen, W. M., & van Riper, C., I. I. I. (2003). Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats. Condor, 105, 611–634.CrossRefGoogle Scholar
  22. Konrad, S. K., Miller, S. N., Reeves, W. K., & Tietze, N. S. (2009). Spatially explicit West Nile virus risk modeling in Santa Clara County, CA. Vector-Borne and Zoonotic Diseases, 9, 267–274.CrossRefGoogle Scholar
  23. LANDFIRE Program. (2009). LANDFIRE homepage. Accessed 20 July 2009.
  24. Lesica, P., & Allendorf, F. W. (1995). When are peripheral populations valuable for conservation? Conservation Biology, 9, 753–760.CrossRefGoogle Scholar
  25. Manville, A.M. II. (2004). Prairie grouse leks and wind turbines: U.S. Fish and Wildlife Service justification for a 5-mile buffer from leks; additional grassland songbird recommendations. Division of Migratory Bird Management, USFWS, Arlington, VA, peer-reviewed briefing paper. 17 pp.Google Scholar
  26. Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.CrossRefGoogle Scholar
  27. Martínez-Meyer, E., Peterson, A. T., & Hargrove, W. W. (2004). Ecological niches as Stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 13, 305–314.CrossRefGoogle Scholar
  28. Maurer, E. P. (2007). Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California under two emissions scenarios. Climatic Change, 82, 309–325.CrossRefGoogle Scholar
  29. Meinke, C. W., Knick, S. T., & Pyke, D. A. (2008). A spatial model to prioritize sagebrush landscapes in the Intermountain West (U.S.A.) for restoration. Restoration Ecology, Published online 28 Jun 2008.Google Scholar
  30. Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17, 2145–2151.CrossRefGoogle Scholar
  31. Motha, R. P., & Baier, W. (2005). Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climatic Change, 70, 137–164.CrossRefGoogle Scholar
  32. Moynahan, B. J., LIndber, M. S., & Thomas, J. W. (2006). Factors contributing to process variance in annual survival of female greater sage-grouse in Montana. Ecological Applications, 16, 1529–1538.CrossRefGoogle Scholar
  33. Naugle, D. E., Aldridge, C. L., Walker, B. L., Cornish, T. E., Moynahan, B. J., Holloran, M. J., et al. (2004). West Nile virus: Pending crisis for greater sage-grouse. Ecology Letters, 7, 704–713.CrossRefGoogle Scholar
  34. Naugle, D. E., Aldridge, C. L., Walker, B. L., Doherty, K. E., Matchett, M. R., McIntosh, J., et al. (2005). West Nile virus and sage-grouse: What more have we learned? Wildlife Society Bulletin, 33, 616–623.CrossRefGoogle Scholar
  35. Naugle, D. E., Doherty, K. E., Walker, B. L., Holloran, M. J., Copeland, H. E. (2010). Greater sage-grouse and energy development in western North America. Studies in Avian Biology (in press).Google Scholar
  36. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are area bioclimatic envelope models useful? Global Ecology and Biogeography, 12, 361–371.CrossRefGoogle Scholar
  37. Pearson, R. G., Raxworthy, C. J., Nakamura, N., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.CrossRefGoogle Scholar
  38. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
  39. Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. A. (2007). Conservation planning in a changing world. Trends in Ecology & Evolution, 22, 583–592.CrossRefGoogle Scholar
  40. Raes, N., & ter Steege, H. (2007). A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727–736.CrossRefGoogle Scholar
  41. Reisen, W. K., Fang, Y., & Martínez, V. M. (2006). Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43, 309–317.CrossRefGoogle Scholar
  42. Reisen, W. K., Meyer, R. P., Presser, S. B., & Hardy, J. L. (1993). Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 30, 151–160.Google Scholar
  43. Santa Clara University. (2008). Statistically downscaled WCRP CMIP3climate projections. Available online at: []. Accessed on 20 July 2009.
  44. Schrag, A. M., Bunn, A. G., & Graumlich, L. J. (2008). Influence of bioclimatic variables on tree-line conifer distribution in the Greater Yellowstone Ecosystem: Implications for species of conservation concern. Journal of Biogeography, 35, 698–710.CrossRefGoogle Scholar
  45. Schroeder, M. A., Aldridge, C. L., Apa, A. D., Bohne, J. R., Braun, C. E., Bunnell, S. D., et al. (2004). Distribution of sage-grouse in North America. Condor, 106, 363–376.CrossRefGoogle Scholar
  46. Schwinning, S., Starr, B. I., & Ehleringer, J. R. (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake. Journal of Arid Environments, 60, 547–566.CrossRefGoogle Scholar
  47. Stubbs, M. (2007). Land conversion in the Northern Plains. Congressional Research Service Report for Congress, Order Code RL33950. Published on 5 Apr 2007.Google Scholar
  48. Tack, J. (2006). Sage-grouse and the human footprint: Implications for conservation of small and declining populations. Master’s thesis, University of Montana, Missoula, 106 pp.Google Scholar
  49. Thornton, P. E., Running, S. W., & White, M. A. (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 190, 214–251.CrossRefGoogle Scholar
  50. Turell, M. J., Dohm, D. J., Sardelis, M. R., O’Guinn, M. L., Andreadis, T. G., & Blow, J. A. (2005). An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology, 42, 57–62.CrossRefGoogle Scholar
  51. Walker, B. L. & Naugle, D. E. (2010). West Nile virus ecology in sagebrush habitat and impacts on greater sage-grouse populations. Studies in Avian Biology (in press).Google Scholar
  52. Walker, B. L., Naugle, D. E., & Doherty, K. E. (2007a). Greater sage-grouse population response to energy development and habitat loss. Journal of Wildlife Management, 71, 2644–2654.CrossRefGoogle Scholar
  53. Walker, B. L., Naugle, D. E., Doherty, K. E., & Cornish, T. E. (2007b). West Nile virus and greater sage-grouse: Estimating infection rate in a wild bird population. Avian Diseases, 51, 691–696.CrossRefGoogle Scholar
  54. Wells, P. V. (1970). Postglacial vegetational history of the Great Plains. Science, 167, 1574–1582.CrossRefGoogle Scholar
  55. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.CrossRefGoogle Scholar
  56. Wilson, K. A., Westphal, M. I., Possingham, H. P., & Elith, J. (2005). Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 122, 99–112.CrossRefGoogle Scholar
  57. Zou, L., Miller, S. N., & Schmidtmann, E. T. (2007). A GIS tool to estimate West Nile virus risk based on a degree-day model. Environmental Monitoring Assessment, 129, 413–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anne Schrag
    • 1
  • Sarah Konrad
    • 2
  • Scott Miller
    • 2
  • Brett Walker
    • 3
  • Steve Forrest
    • 4
  1. 1.Northern Great Plains ProgramBozemanUSA
  2. 2.Department of Renewable ResourcesUniversity of WyomingLaramieUSA
  3. 3.Wildlife Biology ProgramUniversity of MontanaMissoulaUSA
  4. 4.Northern Great Plains ProgramWorld Wildlife FundBozemanUSA

Personalised recommendations