Advertisement

GeoJournal

, Volume 75, Issue 1, pp 15–27 | Cite as

Applying spatial thinking in social science research

  • John R. LoganEmail author
  • Weiwei Zhang
  • Hongwei Xu
Article

Abstract

Spatial methods that build upon Geographic Information Systems are spreading quickly across the social sciences. This essay points out that the appropriate use of spatial tools requires more careful thinking about spatial concepts. As easy as it is now to measure distance, it is increasingly important to understand what we think it represents. To interpret spatial patterns, we need spatial theories. We review here a number of key concepts as well as some of the methodological approaches that are now at the disposal of researchers, and illustrate them with studies that reflect the very wide range of problems that use these tools.

Keywords

GIS Spatial methods Spatial concepts 

References

  1. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.Google Scholar
  2. Chaix, B., Merlo, J., Subramanian, S. V., Lynch, J., & Chauvin, P. (2005). Comparison of a spatial perspective with the multilevel analytical approach in neighborhood studies: The case of mental, behavioral disorders due to psychoactive substance use in Malmö, Sweden, 2001. American Journal of Epidemiology, 162(2), 171–182.CrossRefGoogle Scholar
  3. Chomitz, K. M., & Gray, D. A. (1996). Roads, land use, and deforestation: A spatial model applied to Belize. The World Bank Economic Review, 10(3), 487–512.Google Scholar
  4. Diggle, P. J. (1983). Statistical analysis of spatial point patterns. New York: Academic Press.Google Scholar
  5. Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics. Journal of the Royal Statistical Society Series C (Applied Statistics), 47(3), 299–350.CrossRefGoogle Scholar
  6. Downey, L. (2006). Environmental racial inequality in Detroit. Social Forces, 85(2), 771–796.CrossRefGoogle Scholar
  7. Entwisle, B., Rindfuss, R. R., Walsh, S. J., Evans, T. P., & Curran, S. R. (1997). Current geographic information systems, spatial network analysis, and contraceptive choice. Demography, 34(2), 171–187.CrossRefGoogle Scholar
  8. Gatrell, A. C., Bailey, T. C., Diggle, P. J., & Rowlingson, B. S. (1996). Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers, 21(1), 256–274.CrossRefGoogle Scholar
  9. Johnson, K. M., Voss, P. R., Hammer, R. B., Fuguitt, G. V., & McNiven, S. (2005). Temporal and spatial variation in age-specific net migration in the United States. Demography, 42(4), 791–812.CrossRefGoogle Scholar
  10. Kelsall, J., & Wakefield, J. (2002). Modeling spatial variation in disease risk: A geostatistical approach. Journal of the American Statistical Association, 97(459), 692–701.CrossRefGoogle Scholar
  11. Logan, J. R., Zhang, W., & Alba, R. D. (2002). Immigrant enclaves and ethnic communities in New York and Los Angeles. American Sociological Review, 67(2), 299–322.CrossRefGoogle Scholar
  12. Pais, J. F., & Elliott, J. R. (2008). Places as recovery machines: Vulnerability and neighborhood change after major hurricanes. Social Forces, 86(4), 1415–1453.CrossRefGoogle Scholar
  13. Pan, W., Carr, D., Barbieri, A., Bilsborrow, R., & Suchindran, C. (2007). Forest clearing in the Ecuadorian Amazon: A study of patterns over space and time. Population Research and Policy Review, 26(5–6), 635–659.CrossRefGoogle Scholar
  14. Pastor, M., Sadd, J. L., & Morello-Frosch, R. (2004). Waiting to inhale: The demographics of toxic air release facilities in 21st-Century California. Social Science Quarterly, 85(2), 420–440.CrossRefGoogle Scholar
  15. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage Publications Inc.Google Scholar
  16. Reardon, S. F., Matthews, S. A., O’Sullivan, D., Lee, B. A., Firebaugh, G., Farrell, C. R., et al. (2008). The geographic scale of metropolitan racial segregation. Demography, 45(3), 489–514.CrossRefGoogle Scholar
  17. Siqueira, J. B., Martelli, C. M. T., Maciel, I. J., Oliveira, R. M., Ribeiro, M. G., Amorim, F. P., et al. (2004). Household survey of dengue infection in central Brazil: Spatial point pattern analysis and risk factors assessment. American Journal of Tropical Medicine and Hygiene, 71(5), 646–651.Google Scholar
  18. Skinner, G. W., Henderson, M., & Jianhua, Y. (2000). China’s fertility transition through regional space: Using GIS and census data for a spatial analysis of historical demography. Social Science History, 24(3), 167–206.CrossRefGoogle Scholar
  19. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage Publications Inc.Google Scholar
  20. Tolnay, S. E., White, K. J. C., Crowder, K. D., & Adelman, R. M. (2005). Distances traveled during the great migration: An analysis of racial differences among male migrants. Social Science History, 29(4), 523–548.Google Scholar
  21. Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5), 457–476.CrossRefGoogle Scholar
  22. Wiseman, R. F., & Virden, M. (1977). Spatial and social dimensions of intraurban elderly migration. Economic Geography, 53(1), 1–13.CrossRefGoogle Scholar
  23. Wong, D. W. S. (1999). Several fundamentals in implementing spatial statistics in GIS: Using centrographic measures as examples. Geographic Information Sciences, 5(2), 163–174.Google Scholar
  24. Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99(467), 673–686.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations