, Volume 23, Issue 4, pp 663–687 | Cite as

FeaturEyeTrack: automatic matching of eye tracking data with map features on interactive maps

  • Fabian GöbelEmail author
  • Peter Kiefer
  • Martin Raubal


Map reading is a visual task that can strongly vary between individuals and maps of different characteristics. Aspects such as where, when, how long, and in which sequence information on a map is looked at can reveal valuable insights for both the map design process and to better understand cognitive processes of the map user. Contrary to static maps, for which many eye tracking studies are reported in the literature, established methods for tracking and analyzing visual attention on interactive maps are yet missing. In this paper, we present a framework called FeaturEyeTrack that allows to automatically log the cartographic features that have been inspected as well as the mouse input during the interaction with digital interactive maps. In particular, the novelty of FeaturEyeTrack lies in matching of gaze with the vector model of the current map visualization, therefore enabling a very detailed analysis without the requirement for manual annotation. Furthermore, we demonstrate the benefits of this approach in terms of manual work, level of detail and validity compared to state-of-the-art methods through a case study on an interactive cartographic web map.


Eye tracking Eye movement analysis Interactive maps User logging Human computer interaction 



This work is supported by the Swiss National Science Foundation under Grant No.: 200021_162886.


  1. 1.
    Alaçam Ö, Dalcı M (2009) A usability study of WebMaps with eye tracking tool: the effects of iconic representation of information. In: International conference on human-computer interaction, vol 5610 LNCS. Springer, pp 12–21. CrossRefGoogle Scholar
  2. 2.
    Andrienko G, Andrienko N, Burch M, Weiskopf D (2012) Visual analytics methodology for eye movement studies. IEEE Trans Vis Comput Graph 18(12):2889–2898. CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T (2014) State-of-the-Art of visualization for eye tracking data. In: Eurographics conference on visualization (EuroVis). The Eurographics Association, pp 1–20
  5. 5.
    Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207. CrossRefGoogle Scholar
  6. 6.
    Brewer CA (2016) Designing better maps, 2nd edn. Esri Press, RedlandsGoogle Scholar
  7. 7.
    Brodersen L, Andersen HHK, Weber S (2001) Applying eye-movement tracking for the study of map perception and map design, vol 4. Kort & Matrikelstyrelsen, CopenhagenGoogle Scholar
  8. 8.
    Brychtová A (2015) Exploring the influence of colour distance and legend position on choropleth maps readability. In: Modern trends in cartography: selected papers of CARTOCON 2014. Springer International Publishing, pp 303–314Google Scholar
  9. 9.
    Brychtová A, Çöltekin A (2016) An empirical user study for measuring the influence of colour distance and font size in map reading using eye tracking. Cartogr J 53(3):202–212. CrossRefGoogle Scholar
  10. 10.
    Cartwright WE, Hunter GJ (2001) Towards a methodology for the evaluation of multimedia geographical information products. GeoInformatica 5 (3):291–315. CrossRefGoogle Scholar
  11. 11.
    Castner HW, Eastman RJ (1985) Eye-movement parameters and perceived map complexity - II. Cartogr Geogr Inf Sci 12(1):29–40. CrossRefGoogle Scholar
  12. 12.
    Çöltekin A, Heil B, Garlandini S, Fabrikant SI (2009) Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartogr Geogr Inf Sci 36(1):5–17 . CrossRefGoogle Scholar
  13. 13.
    Çöltekin A, Fabrikant SI, Lacayo M (2010) Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. Int J Geogr Inf Sci 24(10):1559–1575. CrossRefGoogle Scholar
  14. 14.
    Çöltekin A, Demsar U, Brychtová A, Vandrol J (2014) Eye-hand coordination during visual search on geographic displays. In: Proceedings of the 2nd international workshop on eye tracking for spatial research (ET4S 2014), pp 12–16Google Scholar
  15. 15.
    Dong W, Liao H, Roth RE, Wang S (2014) Eye tracking to explore the potential of enhanced imagery basemaps in web mapping. Cartogr J 51(4):313–329. CrossRefGoogle Scholar
  16. 16.
    Duchowski AT (2002) A breadth-first survey of eye-tracking applications. Behav Res Methods Instrum Comput 34(4):455–470. CrossRefGoogle Scholar
  17. 17.
    Duchowski AT (2017) Eye tracking methodology: theory and practice, 3rd edn. Springer International Publishing, BerlinCrossRefGoogle Scholar
  18. 18.
    Duchowski AT, Krejtz K, Krejtz I, Biele C, Niedzielska A, Kiefer P, Raubal M, Giannopoulos I (2018) The index of pupillary activity: measuring cognitive load vis-à-vis task difficulty with pupil oscillation. In: Proceedings of the 2018 CHI conference on human factors in computing systems, CHI ’18. ACM, New York, pp 282:1–282:13.
  19. 19.
    Fabrikant SI, Goldsberry K (2005) Thematic relevance and perceptual salience of dynamic geovisualization displays. In: Proceedings of the 22th international cartographic conference, Coruña, Spain, pp 11–16Google Scholar
  20. 20.
    Fabrikant SI, Lobben AK (2009) Introduction: cognitive issues in geographic information visualization. Cartographica: the International Journal for Geographic Information and Geovisualization 44(3):139–143. CrossRefGoogle Scholar
  21. 21.
    Fabrikant SI, Rebich-Hespanha S, Andrienko N, Andrienko G, Montello DR (2008) Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. Cartogr J 45(3):201–215. CrossRefGoogle Scholar
  22. 22.
    Fabrikant SI, Hespanha SR, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann Assoc Am Geogr 100(1):13–29. CrossRefGoogle Scholar
  23. 23.
    Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57(1):191–195. CrossRefGoogle Scholar
  24. 24.
    Fogarty C, Stern JA (1989) Eye movements and blinks: their relationship to higher cognitive processes. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 8(1):35–42CrossRefGoogle Scholar
  25. 25.
    Gaffuri J (2012) Toward web mapping with vector data. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 7478 LNCS. Springer, pp 87–101, DOI CrossRefGoogle Scholar
  26. 26.
    Garlandini S, Fabrikant SI (2009) Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. In: Conference on spatial information theory (COSIT’09), vol 5756. Springer, pp 195–211. CrossRefGoogle Scholar
  27. 27.
    Giannopoulos I, Kiefer P, Raubal M (2012) Geogazemarks: providing gaze history for the orientation on small display maps. In: Proceedings of the 14th ACM international conference on multimodal interaction (ICMI ’12). ACM Press, New York, 20120036433, pp 165–172.
  28. 28.
    Göbel F, Giannopoulos I, Raubal M (2016) The importance of visual attention for adaptive interfaces. Proceedings of the 18th international conference on human-computer interaction with mobile devices and services adjunct (MobileHCI ’16), pp 930–935.
  29. 29.
    Göbel F, Kiefer P, Raubal M (2017) FeaturEyeTrack: a vector tile-based eye tracking framework for interactive maps. In: Bregt A, Sarjakoski T, van Lammeren R, Rip F (eds) Societal geo-innovation: short papers, posters and poster abstracts of the 20th AGILE conference on geographic information science. Wageningen, The NetherlandsGoogle Scholar
  30. 30.
    Göbel F, Kiefer P, Giannopoulos I, Duchowski AT, Raubal M (2018) Improving map reading with gaze-adaptive legends. In: ETRA ’18: 2018 symposium on eye tracking research & applications. ACM, DOI
  31. 31.
    Hess EH, Polt JM (1964) Pupil size in relation to mental activity during simple problem-solving. Science 143(3611):1190–1192. CrossRefGoogle Scholar
  32. 32.
    Holmqvist K, Andersson R (2017) Eye tracking: a comprehensive guide to methods and measures. Lund, Sweden: Lund Eye-Tracking Research InstitudeGoogle Scholar
  33. 33.
    Jacob RJK (1993) Eye movement-based human-computer interaction techniques: toward non-command interfaces. In: Advances in human-computer interaction, vol 4. Ablex Publishing Co, pp 151–190Google Scholar
  34. 34.
    Just MA, Carpenter PA (1976) Eye fixations and cognitive processes. Cogn Psychol 8(4):441–480. CrossRefGoogle Scholar
  35. 35.
    Just MA, Carpenter PA (1980) A theory of reading: from eye fixations to comprehension. Psychol Rev 87(4):329–354. CrossRefGoogle Scholar
  36. 36.
    Kiefer P, Giannopoulos I (2012) Gaze map matching: mapping eye tracking data to geographic vector features. In: Proceedings of the 20th international conference on advances in geographic information systems (SIGSPATIAL ’12). ACM, New York, pp 359–368, DOI
  37. 37.
    Kiefer P, Giannopoulos I, Raubal M (2013) Using eye movements to recognize activities on cartographic maps. In: Proceedings of the 21st SIGSPATIAL international conference on advances in geographic information systems, pp 498–501.
  38. 38.
    Kiefer P, Giannopoulos I, Raubal M (2014) Where am I? investigating map matching during self-localization with mobile eye tracking in an urban environment. Trans in GIS 18(5):660–686. CrossRefGoogle Scholar
  39. 39.
    Kiefer P, Giannopoulos I, Duchowski A, Raubal M (2016) Measuring cognitive load for map tasks through pupil diameter. In: Proceedings of the 9th international conference on geographic information science (GIScience 2016), vol 9927 LNCS. Springer International Publishing, pp 323–337, DOI CrossRefGoogle Scholar
  40. 40.
    Kiefer P, Giannopoulos I, Anagnostopoulos VA, Schöning J, Raubal M (2017) Controllability matters: the user experience of adaptive maps. GeoInformatica 21(3):619–641. CrossRefGoogle Scholar
  41. 41.
    Kiefer P, Giannopoulos I, Raubal M, Duchowski A (2017) Eye tracking for spatial research: cognition, computation, challenges. Spat Cogn Comput 17(1–2). CrossRefGoogle Scholar
  42. 42.
    Kraak JM, Brown A (2000) Web cartography - developments and prospects. Taylor & Francis, LondonCrossRefGoogle Scholar
  43. 43.
    Krassanakis V (2013) Exploring the map reading process with eye movement analysis laboratory setup and analysis software. In: Proceedings of the 1st international workshop on eye tracking for spatial research (in conjunction with COSIT 2013), pp 2–7Google Scholar
  44. 44.
    Land M, Tatler B (2009) Looking and acting: vision and eye movements in natural behaviour. Oxford University Press, LondonCrossRefGoogle Scholar
  45. 45.
    Land M, Mennie N, Rusted J (1999) The roles of vision and eye movements in the control of activities of daily living. Perception 28(11):1311–1328. CrossRefGoogle Scholar
  46. 46.
    Lewis C (1982) Using the “thinking Aloud” method in cognitive interface design. Tech. rep. IBM Thomas J. Watson Research Center, Yorktown HeightsGoogle Scholar
  47. 47.
    Lloyd RE (2005) Attention on maps. Cartographic perspectives: 28–57.
  48. 48.
    Lobben AK (2004) Tasks, strategies, and cognitive processes associated with navigational map reading: a review perspective. Prof Geogr 56(2):270–281Google Scholar
  49. 49.
    MacEachren AM (2004) How maps work representation, visualization, and design. Guilford Press, New YorkGoogle Scholar
  50. 50.
    MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28(1):3–12. CrossRefGoogle Scholar
  51. 51.
    Montello DR (2002) Cognitive map-design research in the twentieth century: theoretical and empirical approaches. Cartogr Geogr Inf Sci 29(3):283–304. CrossRefGoogle Scholar
  52. 52.
    Nielsen J (1993) Usability engineering. Morgan Kaufmann Publishers Inc, San FranciscoCrossRefGoogle Scholar
  53. 53.
    Noton D, Stark L (1971) Eye movements and visual perception. Sci Am 224(6):35–43Google Scholar
  54. 54.
    Ooms K, De Maeyer P, Fack V (2010) Analysing eye movement patterns to improve map design. International archives of the photogrammetry. Remote sensing and spatial information sciences - ISPRS Archives, vol 38Google Scholar
  55. 55.
    Ooms K, De Maeyer P, Fack V, Van Assche E, Witlox F (2012) Interpreting maps through the eyes of expert and novice users. Int J Geogr Inf Sci 26 (10):1773–1788. CrossRefGoogle Scholar
  56. 56.
    Ooms K, Çöltekin A, De Maeyer P, Dupont L, Fabrikant S, Incoul A, Kuhn M, Slabbinck H, Vansteenkiste P, Van der Haegen L (2015) Combining user logging with eye tracking for interactive and dynamic applications. Behav Res Methods 47(4):977–993. CrossRefGoogle Scholar
  57. 57.
    Peterson MP (2008) International perspectives on maps and the internet. Lecture notes in geoinformation and cartography. Springer, BerlinCrossRefGoogle Scholar
  58. 58.
    Pfeuffer K, Vidal M, Turner J, Bulling A, Gellersen H (2013) Pursuit calibration: making gaze calibration less tedious and more flexible. In: Proceedings of the 26th annual ACM symposium on user interface software and technology (UIST ’13). ACM Press, New York, pp 261–270.
  59. 59.
    Poole A, Ball LJ (2006) Encyclopedia of human computer interaction. IGI global.
  60. 60.
    Popelka S, Brychtova A, Brus J, Vov̌enílek V (2012) Advanced map optimalization based on eye-tracking, cartography - a tool for spatial analysis. Carlos Bateira, IntechOpen. Google Scholar
  61. 61.
  62. 62.
    Raper J (2007) Geographic relevance. J Doc 63(6):836–852. CrossRefGoogle Scholar
  63. 63.
    Robinson AH (1952) The look of maps: an examination of cartographic design. Esri Press, RedlandsGoogle Scholar
  64. 64.
    Robinson DA (1965) The mechanics of human smooth pursuit eye movement. J Physiol 180(3):569–591CrossRefGoogle Scholar
  65. 65.
    Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. Proceedings of the eye tracking research and applications symposium (ETRA ’00), pp 71–78.
  66. 66.
    Slocum TA, Blok C, Jiang B, Koussoulakou A, Montello DR, Fuhrmann S, Hedley NR (2001) Cognitive and usability issues in geovisualization. Cartogr Geogr Inf Sci 28 (1):61–75. CrossRefGoogle Scholar
  67. 67.
    Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization, 3rd edn. Pearson, Upper Saddle RiverGoogle Scholar
  68. 68.
  69. 69.
    Steinke T (1987) Eye movement studies in cartography and related fields. Cartographica 24(2):40–73CrossRefGoogle Scholar
  70. 70.
    Strube G (1992) The role of cognitive science in knowledge engineering. In: Proceedings of the first joint workshop on contemporary knowledge engineering and cognition. Springer, pp 161–174Google Scholar
  71. 71.
  72. 72.
    Vidal M, Bulling A, Gellersen H (2012) Detection of smooth pursuits using eye movement shape features. Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA ’12) 1(212):177. CrossRefGoogle Scholar
  73. 73.
    Voßkühler A, Nordmeier V, Kuchinke L, Jacobs AM (2008) OGAMA (open gaze and mouse analyzer): open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav Res Methods 40(4):1150–1162. CrossRefGoogle Scholar
  74. 74.
    Yarbus AL (1967) Eye movements and vision. Neuropsychologia 6(4):389–390. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.ETH ZurichInstitute of Cartography and GeoinformationZurichSwitzerland

Personalised recommendations