An efficient aggregation and overlap removal algorithm for circle maps

  • 269 Accesses

  • 1 Citations


The visualization of spatial data is becoming increasingly important in science, business and many other areas. There are two main reasons for this: First, the amount of spatial data is growing continuously, making it impossible for people to manually process the data in raw form. Secondly, users have very high demands on the interactive processing of big spatial data in visual form. For instance in geography, data often corresponds to a large number of point observations that should be displayed on a constrained screen with limited resolution. This causes two crucial problems: drawing a lot of points is expensive at runtime and leads to a loss of information due to an overloaded and occluded visualization. In this paper we present a new efficient visualization algorithm that avoids these problems by aggregating point data into a set of non-overlapping circles with the following properties: (i) they follow the distribution of the data, (ii) they represent the cardinality of the underlying point subset by the circle area, (iii) they reveal hot spots while simultaneously keeping outliers, and (iv) the number of circles is typically much smaller than the number of points. Based on a quadtree, our algorithm computes the circles in linear time with respect to the number of points. Experimental results confirm its excellent runtime and quality in comparison to competitors.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1., visited December 2, 2018

  2. 2.

  3. 3.

  4. 4.

    Global Biodiversity Information Facility,


  1. 1.

    Madhavan J, Balakrishnan S, Brisbin K, Gonzalez H, Gupta N, Halevy AY, Jacqmin-Adams K, Lam H, Langen A, Lee H (2012) Big data storytelling through interactive maps. IEEE Data Eng Bull 35(2):46

  2. 2.

    Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D (2012) Visual analytics for the big data era - a comparative review of state-of-the-art commercial systems. In: VAST’12: Proceedings of the 2012 IEEE conference on visual analytics science and technology. IEEE Computer Society, Washington, pp 173–182

  3. 3.

    Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008). In: Kerren A, Stasko JT, Fekete JD, North C (eds) Information visualization. Springer, Berlin, pp 154–175

  4. 4.

    Diepenbroek M, Glöckner F, Grobe P et al (2014) Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: GI-Jahrestagung, pp 1711–1721

  5. 5.

    Authmann C, Beilschmidt C, Drönner J, Mattig M, Seeger B (2015) Rethinking spatial processing in data-intensive science. In: BTW 2015: Datenbanksysteme für business, Technologie und Web - Workshopband, vol P242. Gesellschaft für Informatik e.V., Bonn, pp 161–170

  6. 6.

    Beilschmidt C, Drönner J, Mattig M, Schmidt M, Authmann C, Niamir A, Hickler T, Seeger B (2017) Interactive data exploration for geoscience. In: BTW 2017: Datenbanksysteme für Business, Technologie und Web - Workshopband, vol P-266. Gesell-schaft für Informatik e.V., Bonn, pp 117–126

  7. 7.

    Beilschmidt C, Drȯnner J., Mattig M, Seeger B (2017) VAT: a system for data-driven biodiversity research. In: EDBT 2017: Proceedings of the 20th international conference on extending database technology., Konstanz, pp 546–549

  8. 8.

    Beilschmidt C, Fober T, Mattig M, Seeger B (2017) A linear-time algorithm for the aggregation and visualization of big spatial point data. In: SIGSPATIAL ’17: proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, New York, pp 73:1–73:4

  9. 9.

    Jänicke S, Heine C, Scheuermann G (2013) GeoTemCo: comparative visualization of geospatial-temporal data with clutter removal based on dynamic delaunay triangulations. In: VISIGRAPP 2012: proceedings of the 7th international joint conference on computer vision, imaging and computer graphics. Theory and application, vol 359. Springer, Berlin, pp 160–175

  10. 10.

    Beilschmidt C, Fober T, Mattig M, Seeger B (2017) Quality measures for visual point clustering in geospatial mapping. In: W2GIS 2017: proceedings of the 15th international symposium on web and wireless geographical information systems. Springer International Publishing, Cham, pp 153–168

  11. 11.

    Jȧnicke S, Heine C, Stockmann R, Scheuermann G (2012) Comparative visualization of geospatial-temporal data. In: GRAPP & IVAPP 2012 proceedings of the international conference on computer graphics theory and applications and international conference on information visualization theory and application. SciTePress, Setu̇bal, pp 613–625

  12. 12.

    Slocum T, McMaster R, Kessler F, Howard H (2009) Thematic cartography and geovisualization. Prentice Hall, Upper Saddle River

  13. 13.

    Pickering S (2017) A new way to proxy levels of infrastructure development research and politics, 4(1)

  14. 14.

    Forrest D, Castner HW (1985) The design and perception of point symbols for tourist maps. Cartogr J 22(1):11

  15. 15.

    de Berg M, Cheong O, van Kreveld MJ, Overmars MH (2008) Computational geometry: algorithms and applications, 3rd edn. Springer, Berlin

  16. 16.

    Bereuter P, Weibel R (2013) Real-time generalization of point data in mobile and web mapping using quadtrees. Cartogr Geogr Inf Sci 40(4):271

  17. 17.

    Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann, San Francisco

  18. 18.

    Aggarwal CC, Reddy CK (2014) Data clustering: algorithms and applications. CRC Press, Boca Raton

  19. 19.

    Park Y, Cafarella MJ, Mozafari B (2016) Visualization-aware sampling for very large databases. In: Proceedings of the IEEE 32nd international conference on data engineering (ICDE). IEEE Computer Society, Washington, pp 755–766

  20. 20.

    Wang L, Christensen R, Li F, Yi K (2015) Spatial Online Sampling and Aggregation. Proc VLDB Endow 9(3):84

  21. 21.

    Sarma AD, Lee H, Gonzalez H, Madhavan J, Halevy AY (2012) Efficient spatial sampling of large geographical tables. In: SIGMOD ’12: proceedings of the 2012 ACM SIGMOD international conference on management of data. ACM, New York, pp 193–204

  22. 22.

    Grȯbe M, Burghardt D (2017) Micro diagrams: a multi-scale approach for mapping large categorised point datasets. In: Proceedings of AGILE 2017: the 20th AGILE international conference on geographic information science

  23. 23.

    Liu Z, Jiang B, Heer J (2013) imMens: real-time visual querying of big data. Comput Graph Forum 32(3):421

  24. 24.

    Zhang L, Rooney C, Nachmanson L, Wong BLW, Kwon BC, Stoffel F, Hund M, Qazi N, Singh U, Keim DA (2016) Spherical similarity explorer for comparative case analysis. In: Proceedings of the IS&T international symposium on electronic imaging 2016 visualization and data analysis. Ingenta, Oxford, pp 1–10

  25. 25.

    Ghanem TM, Magdy A, Musleh M, Ghani S, Mokbel MF (2014) VisCAT: spatio-temporal visualization and aggregation of categorical attributes in twitter data. In: SIGSPATIAL ’14: proceedings of the 22th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, New York, pp 537–540

  26. 26.

    Ellis G, Dix A (2007) A taxonomy of clutter reduction for information visualisation. IEEE Trans Vis Comput Graph 13(6):1216

  27. 27.

    Samet H (1990) The design and analysis of spatial data structures. Addison-Wesley, Reading

  28. 28.

    Konheim AG (2010) Hashing in computer science: fifty years of slicing and dicing. Wiley, Hoboken

  29. 29.

    Bader M (2013) Space-filling curves - an introduction with applications in scientific computing. Springer, Berlin

  30. 30.

    Lipowski A, Lipowska D (2012) Roulette-wheel selection via stochastic acceptance. Physica A: Statist Mech Appl 391(6):2193

  31. 31.

    Liu Z, Heer J (2014) The effects of interactive latency on exploratory visual analysis. IEEE Trans Vis Comput Graph 20(12):2122

  32. 32.

    Corder GW, Foreman DI (2014) Nonparametric statistics: a step-by-step approach. Wiley, Hoboken

  33. 33.

    Grbiċ R, Grahovac D, Scitovski R (2016) A method for solving the multiple ellipses detection problem. Pattern Recogn 60:824

Download references


This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. SE 553/7-2.

Author information

Correspondence to Christian Beilschmidt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beilschmidt, C., Mattig, M., Fober, T. et al. An efficient aggregation and overlap removal algorithm for circle maps. Geoinformatica 23, 473–498 (2019).

Download citation


  • Point aggregation
  • Spatial visualization
  • Big spatial point data