Advertisement

GeoInformatica

, Volume 23, Issue 1, pp 1–36 | Cite as

Spatio-temporal access methods: a survey (2010 - 2017)

  • Ahmed R. MahmoodEmail author
  • Sri Punni
  • Walid G. Aref
Article
  • 409 Downloads

Abstract

The volume of spatio-temporal data is growing at a rapid pace due to advances in location-aware devices, e.g., smartphones, and the popularity of location-based services, e.g., navigation services. A number of spatio-temporal access methods have been proposed to support efficient processing of queries over the spatio-temporal data. Spatio-temporal access methods can be classified according to the type of data being indexed into the following categories: (1) indexes for historical spatio-temporal data, (2) indexes for current and recent spatio-temporal data, (3) indexes for future spatio-temporal data, (4) indexes for past, present, and future spatio-temporal data, (5) indexes for spatio-temporal data with associated textual data, and (6) parallel and distributed spatio-temporal systems and indexes. This survey is Part 3 of our previous surveys on the same subject (Mokbel et al. IEEE Data Eng Bull 26(2):40–49, 2003; Nguyen-Dinh et al. IEEE Data Eng Bull 33(2):46–55, 2010). In this survey, we present an overview and a broad classification of the spatio-temporal access methods published between 2010 and 2017.

Keywords

Spatio-temporal data Indexing Databases 

Notes

Acknowledgements

This work has been partially supported by the National Science Foundation under Grant Number III-1815796.

References

  1. 1.
    Abdelguerfi M, Givaudan J, Shaw K, Ladner R (2002) The 2-3TR-tree, a trajectory-oriented index structure for fully evolving valid-time spatio-temporal datasets. In: ACM-GIS, pp 29–34Google Scholar
  2. 2.
    Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp 175–186. ACMGoogle Scholar
  3. 3.
    Ahmed P, Hasan M, Kashyap A, Hristidis V, Tsotras VJ (2017) Efficient computation of top-k frequent terms over spatio-temporal ranges. In: The international conference on management of data (SIGMOD’17), pp 1227–1241Google Scholar
  4. 4.
    Akdogan A, Shahabi C, Demiryurek U (2014) ToSS-it: A cloud-based throwaway spatial index structure for dynamic location data. In: The IEEE international conference on mobile data management (MDM’14), pp 249–258Google Scholar
  5. 5.
    Akdogan A, Shahabi C, Demiryurek U (2016) D-toSS: A distributed throwaway spatial index structure for dynamic location data. IEEE Trans Knowl Data Eng (TKDE) 28(9):2334–2348Google Scholar
  6. 6.
    Akman V, Franklin WR, Kankanhalli M, Narayanaswami C (1989) Geometric computing and uniform grid technique. Comput Aided Des 21(7):410–420Google Scholar
  7. 7.
    Alarabi L, Mokbel MF (2017) A demonstration of ST-hadoop: A mapreduce framework for big spatio-temporal data. The Proceedings of the VLDB Endowment (PVLDB’17) 10(12):1961–1964Google Scholar
  8. 8.
    Aref WG, Samet H (1990) Efficient processing of window queries in the pyramid data structure. In: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp 265–272Google Scholar
  9. 9.
    Atluri V, Adam NR, Youssef M (2003) Towards a unified index scheme for mobile data and customer profiles in a location-based service environment. In: Workshop on next generation geospatial information (NG2i’03). CiteseerGoogle Scholar
  10. 10.
    Atluri V, Guo Q (2005) Unified index for mobile object data and authorizations. In: European symposium on research in computer security, pp 80–97. SpringerGoogle Scholar
  11. 11.
    Atluri V, Shin H (2007) Efficient security policy enforcement in a location based service environment. In: IFIP Annual conference on data and applications security and privacy, pp 61–76. SpringerGoogle Scholar
  12. 12.
    Bayer R, MCCReight E (1972) Organization and maintenance of large ordered indexes. Acta Informatica 1:173–189Google Scholar
  13. 13.
    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996) An asymptotically optimal multiversion B-tree. Intern J Very Large Data Bases (VLDB Journal) 5(4):264–275Google Scholar
  14. 14.
    Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access method for points and rectangles. SIGMOD Rec 19(2):322–331Google Scholar
  15. 15.
    Belhassena A, HongZhi W (2017) Distributed skyline trajectory query processing. In: Proceedings of the ACM Turing 50th Celebration Conference-China, p 19. ACMGoogle Scholar
  16. 16.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517Google Scholar
  17. 17.
    Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Machine Learn Res 3(Jan):993–1022Google Scholar
  18. 18.
    Bok KS, Seo DM, Shin SS, Yoo JS (2004) TPKDB-Tree: An index structure for efficient retrieval of future positions of moving objects. In: International conference on conceptual modeling, pp 67–78. SpringerGoogle Scholar
  19. 19.
    Brisaboa NR, Ladra S (2009) Navarro, g.: k2-trees for compact web graph representation. In: The international symposium on string processing and information retrieval, vol 9, pp 18–30Google Scholar
  20. 20.
    Burton FW, Kollias JG, Matsakis D, Kollias V (1990) Implementation of overlapping B-trees for time and space efficient representation of collections of similar files. Comput J 33(3):279–280Google Scholar
  21. 21.
    Cai M, Revesz P (2000) Parametric R-tree: An index structure for moving objects. In: International conference on management of data and advances in data management (COMAD’00)Google Scholar
  22. 22.
    Cai R, Lu Z, Wang L, Zhang Z, Fu TZ, Winslett M (2017) DITIR: Distributed Index for high throughput trajectory insertion and real-time temporal range query. The Proceedings of the VLDB Endowment (PVLDB’17) 10(12):1865–1868Google Scholar
  23. 23.
    Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: International conference on management of data (SIGMOD’04), pp 599–610. ACMGoogle Scholar
  24. 24.
    Cha SK, Hwang S, Kim K, Kwon K (2001) Cache-conscious concurrency control of main-memory indexes on shared-memory multiprocessor systems. In: The Proceedings of the VLDB Endowment (PVLDB’01), vol 1, pp 181–190Google Scholar
  25. 25.
    Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with SETI. In: The biennial conference on innovative data systems research (CIDR’03)Google Scholar
  26. 26.
    Chen JD, Meng XF (2007) Indexing future trajectories of moving objects in a constrained network. J Comput Sci Technol 22(2):245–251Google Scholar
  27. 27.
    Chen N, Shou LD, Chen G, Dong JX (2008) Adaptive indexing of moving objects with highly variable update frequencies. J Comput Sci Technol 23(6):998–1014Google Scholar
  28. 28.
    Chen S, Ooi BC, Tan KL, Nascimento MA (2008) ST2B-tree: A self-tunable spatio-temporal b+-tree index for moving objects. In: International conference on management of data (SIGMOD’11), pp 29–42. ACMGoogle Scholar
  29. 29.
    Chen W, Zhao L, Jiajie X, Zheng K, Zhou X (2014) Ranking based activity trajectory search. In: International conference on web information systems engineering, pp 170–185. SpringerGoogle Scholar
  30. 30.
    Chon HD, Agrawal D, El Abbadi A (2001) Storage and retrieval of moving objects. In: International conference on mobile data management (MDM’01), pp 173–184. SpringerGoogle Scholar
  31. 31.
    Christoforaki M, He J, Dimopoulos C, Markowetz A, Suel T (2011) Text vs. space: efficient geo-search query processing. In: The ACM international conference on information and knowledge management (CIKM’11), pp 423–432Google Scholar
  32. 32.
    Cudre-Mauroux P, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large trajectory data sets. In: The international conference on data engineering (ICDE’10), pp 109–120. IEEEGoogle Scholar
  33. 33.
    Dai J, Lu CT (2011) DIME: Disposable Index for moving objects. In: The IEEE international conference on mobile data management (MDM’11), vol 1, pp 68–77Google Scholar
  34. 34.
    De Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. Geoinformatica 9(1):33–60Google Scholar
  35. 35.
    Ding X, Lu Y, Ding X, Zhao N, Wei Q (2007) An efficient index for moving objects with frequent updates. In: International conference on wireless communications, networking and mobile computing (wicom’07), pp 5951–5954. IEEEGoogle Scholar
  36. 36.
    Ding Z (2008) UTR-Tree: An index structure for the full uncertain trajectories of network-constrained moving objects. In: International conference on mobile data management (MDM’08), pp 33–40. IEEEGoogle Scholar
  37. 37.
    Dittrich J, Blunschi L, Salles MAV (2009) Indexing moving objects using short-lived throwaway indexes. In: International symposium on spatial and temporal databases, pp 189–207. SpringerGoogle Scholar
  38. 38.
    Dittrich J, Quiané-Ruiz JA (2012) Efficient big data processing in hadoop mapreduce. Proceedings of the VLDB Endowment (PVLD’12) 5(12):2014–2015Google Scholar
  39. 39.
    Doraiswamy H, Vo HT, Silva CT, Freire J (2016) A GPU-based index to support interactive spatio-temporal queries over historical data. In: The IEEE international conference on data engineering (ICDE’16), pp 1086–1097Google Scholar
  40. 40.
    Elbassioni K, Elmasry A, Kamel I (2003) An efficient indexing scheme for multi-dimensional moving objects. In: International conference on database theory, pp 425–439. SpringerGoogle Scholar
  41. 41.
    Eldawy A, Mokbel MF (2015) Spatialhadoop: a mapreduce framework for spatial data. In: The IEEE international conference on data engineering (ICDE’15), pp 1352–1363Google Scholar
  42. 42.
    Fan P, Li G, Yuan L, Li Y (2012) Vague continuous k-nearest neighbor queries over moving objects with uncertain velocity in road networks. Inf Syst 37(1):13–32Google Scholar
  43. 43.
    Fang Y, Cao J, Peng Y, Wang L (2008) Indexing the past, present and future positions of moving objects on fixed networks. In: International conference on computer science and software engineering, vol 4, pp 524–527. IEEEGoogle Scholar
  44. 44.
    Fang Y, Cao J, Wang J, Peng Y, Song W (2011) HTPR*-Tree: An efficient index for moving objects to support predictive query and partial history query. In: International conference on web-age information management (WAIM’11), pp 26–39. SpringerGoogle Scholar
  45. 45.
    Feng J, Lu J, Zhu Y, Mukai N, Watanabe T (2007) Indexing of moving objects on road network using composite structure. In: International conference on knowledge-based and intelligent information and engineering systems, pp 1097–1104. SpringerGoogle Scholar
  46. 46.
    Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta informatica 4(1):1–9Google Scholar
  47. 47.
    Frentzos E (2003) Indexing objects moving on fixed networks. In: International symposium on spatial and temporal databases, pp 289–305. SpringerGoogle Scholar
  48. 48.
    Ghanem TM, Hammad MA, Mokbel MF, Aref WG, Elmagarmid AK (2007) Incremental evaluation of sliding-window queries over data streams. IEEE Trans Knowl Data Eng (TKDE) 19(1):57–72Google Scholar
  49. 49.
    Gionis A, Indyk P, Motwani R, et al. (1999) Similarity search in high dimensions via hashing. In: The Proceedings of the VLDB Endowment (PVLDB’99), vol 99, pp 518–529Google Scholar
  50. 50.
    Gravano L, Ipeirotis PG, Jagadish HV, Koudas N, Muthukrishnan S, Srivastava D et al (2001) Approximate string joins in a database (almost) for free. In: The Proceedings of the VLDB Endowment (PVLDB’01), vol 1, pp 491–500Google Scholar
  51. 51.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14:47–57Google Scholar
  52. 52.
    Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. In: International conference on extending database technology, pp 251–268. SpringerGoogle Scholar
  53. 53.
    Han L, Huang L, Yang X, Pang W, Wang K (2016) A novel spatio-temporal data storage and index method for ARM-based hadoop server. In: International conference on cloud computing and security, pp 206–216. SpringerGoogle Scholar
  54. 54.
    Han Y, Wang L, Zhang Y, Zhang W, Lin X (2015) Spatial keyword range search on trajectories. In: The international conference on database systems for advanced applications (DASFAA’15), pp 223–240Google Scholar
  55. 55.
    Hariharan R, Hore B, Li C, Mehrotra S (2007) Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: The international conference on scientific and statistical database management (SSDBM’07), pp 16–16Google Scholar
  56. 56.
    He Z, Kraak MJ, Huisman O, Ma X, Xiao J (2013) Parallel indexing technique for spatio-temporal data. ISPRS J Photogramm Remote Sens 78:116–128Google Scholar
  57. 57.
    Hendawi AM, Bao J, Mokbel MF, Ali M (2015) Predictive tree: an efficient index for predictive queries on road networks. In: The IEEE international conference on data engineering (ICDE’15), pp 1215–1226Google Scholar
  58. 58.
    Issa H, Damiani ML (2016) Efficient access to temporally overlaying spatial and textual trajectories. In: The IEEE international conference on mobile data management (MDM’16), vol 1, pp 262–271Google Scholar
  59. 59.
    Jackins CL, Tanimoto SL (1980) OCT-Trees and their use in representing three-dimensional objects. Comput Graphics and Image Process 14(3):249–270Google Scholar
  60. 60.
    Jensen CS, Lin D, Ooi BC (2004) Query and update efficient b+-tree based indexing of moving objects. In: The Proceedings of the VLDB Endowment (PVLDB’04), pp 768–779Google Scholar
  61. 61.
    Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: International symposium on spatial and temporal databases, pp 208–227. SpringerGoogle Scholar
  62. 62.
    Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path prediction and predictive range querying in road network databases. Intern J Very Large Data Bases (VLDB J) 19(4):585–602Google Scholar
  63. 63.
    Kim KS, Kim SW, Kim TW, Li KJ (2003) Fast indexing and updating method for moving objects on road networks. In: International conference on web information systems engineering workshops, pp 34–42. IEEEGoogle Scholar
  64. 64.
    Knuth D (1973) The art of computer programmingGoogle Scholar
  65. 65.
    Kollios G, Gunopulos D, Tsotras VJ (1999) On indexing mobile objects. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp 261–272. ACMGoogle Scholar
  66. 66.
    Kollios G, Tsotras VJ, Gunopulos D, Delis A, Hadjieleftheriou M (2001) Indexing animated objects using spatiotemporal access methods. IEEE Trans Knowl Data Eng (TKDE) 13(5):758–777Google Scholar
  67. 67.
    Kumar A, Tsotras VJ, Faloutsos C (1998) Designing access methods for bitemporal databases. IEEE Trans Knowl Data Eng (TKDE) 10(1):1–20Google Scholar
  68. 68.
    Kwon D, Lee S, Lee S (2002) Indexing the current positions of moving objects using the lazy update R-tree. In: International conference on mobile data management (MDM’03), pp 113–120. IEEEGoogle Scholar
  69. 69.
    Le TTT, Nickerson BG (2008) Efficient search of moving objects on a planar graph. In: International conference on advances in geographic information systems (SIGSPATIAL’08), p 41. ACMGoogle Scholar
  70. 70.
    Lee ML, Hsu W, Jensen CS, Cui B, Teo KL (2003) Supporting frequent updates in R-trees: a bottom-up approach. In: The Proceedings of the VLDB Endowment (PVLDB’03), pp 608–619Google Scholar
  71. 71.
    Liang Y (2011) A efficient indexing maintenance method for grouping moving objects with grid. pp 486–492 ElsevierGoogle Scholar
  72. 72.
    Liao W, Tang G, Jing N, Zhong Z (2006) VTPR-Tree: An efficient indexing method for moving objects with frequent updates. In: International conference on conceptual modeling, pp 120–129. SpringerGoogle Scholar
  73. 73.
    Lin B, Mokhtar H, Pelaez-Aguilera R, Su J (2003) Querying moving objects with uncertainty. In: Vehicular technology conference (VTC’03), vol 4, pp 2783–2787. IEEEGoogle Scholar
  74. 74.
    Lin B, Su J (2005) Handling frequent updates of moving objects. In: International conference on information and knowledge management, pp 493–500. ACMGoogle Scholar
  75. 75.
    Lin D, Jensen CS, Ooi BC, Šaltenis S (2005) Efficient indexing of the historical, present, and future positions of moving objects. In: International conference on mobile data management (MDM’05), pp 59–66. ACMGoogle Scholar
  76. 76.
    Lin D, Jensen CS, Zhang R, Xiao L, Lu J (2011) A moving-object index for efficient query processing with peer-wise location privacy. The Proceedings of the VLDB Endowment (PVLDB’11) 5(1):37–48Google Scholar
  77. 77.
    Lin D, Zhang R, Zhou A (2006) Indexing fast moving objects for kNN queries based on nearest landmarks. Geoinformatica 10(4):423–445Google Scholar
  78. 78.
    Lin HY (2009) Indexing the trajectories of moving objects. International multi-conference of engineers and computer scientistsGoogle Scholar
  79. 79.
    Liu H, Xu J, Zheng K, Liu C, Du L, Wu X (2017) Semantic-aware query processing for activity trajectories. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp 283–292. ACMGoogle Scholar
  80. 80.
    Liu Z, Liu X, Ge J, Bae H (2005) Indexing large moving objects from past to future with PCFI+-index. In: International conference on management of data and advances in data management (COMAD’05), pp 131–137Google Scholar
  81. 81.
    Lomet D, Salzberg B (1989) Access methods for multiversion data, vol 18. ACMGoogle Scholar
  82. 82.
    Luo W, Tan H, Chen L, Ni LM (2013) Finding time period-based most frequent path in big trajectory data. In: The international conference on management of data (SIGMOD’13), pp 713–724Google Scholar
  83. 83.
    Ma C, Lu H, Shou L, Chen G (2013) KSQ: Top-K similarity query on uncertain trajectories. IEEE Trans Knowl Data Eng (TKDE) 25(9):2049–2062Google Scholar
  84. 84.
    MacQueen J, et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297Google Scholar
  85. 85.
    Magdy A, Aly AM, Mokbel MF, Elnikety S, He Y, Nath S, Aref WG (2016) GeoTrend: Spatial trending queries on real-time microblogs. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’16), p 7Google Scholar
  86. 86.
    Magdy A, Mokbel MF, Elnikety S, Nath S, He Y (2014) Mercury: a memory-constrained spatio-temporal real-time search on microblogs. In: The IEEE international conference on data engineering (ICDE’14), pp 172–183Google Scholar
  87. 87.
    Mahmood AR, Aly AM, Kuznetsova T, Basalamah S, Aref WG (2018) Disk-based indexing of recent trajectories. ACM Transactions on Spatial Algorithms and Systems (TSAS) 4(3):7.1–7.27Google Scholar
  88. 88.
    Mahmood AR, Aref WG, Aly AM, Basalamah S (2014) Indexing recent trajectories of moving objects. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’14), pp 393–396Google Scholar
  89. 89.
    Meagher DJ (1980) OCTRee encoding: A new technique for the representation, manipulation and display of arbitrary 3-d objects by computer. Electrical and Systems Engineering Department Rensseiaer Polytechnic Institute Image Processing LaboratoryGoogle Scholar
  90. 90.
    Mehta P, Skoutas D, Voisard A (2015) Spatio-temporal keyword queries for moving objects. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’15), p 55Google Scholar
  91. 91.
    Mokbel MF, Ghanem TM, Aref WG (2003) Spatio-temporal access methods. IEEE Data Eng Bull 26(2):40–49Google Scholar
  92. 92.
    Morton GM (1966) A computer oriented geodetic data base and a new technique in file sequencing. International Business Machines Company, New YorkGoogle Scholar
  93. 93.
    Mukai N, Feng J, Watanabe T (2004) Heuristic approach based on lambda-interchange for VRTPR-tree on specific vehicle routing problem with time windows. In: International conference on industrial, engineering and other applications of applied intelligent systems, pp 229–238. SpringerGoogle Scholar
  94. 94.
    Mukai N, Feng J, Watanabe T (2004) Indexing approach for delivery demands with time constraints. In: Pacific rim international conference on artificial intelligence, pp 95–103. SpringerGoogle Scholar
  95. 95.
    Nascimento MA, Silva JR (1998) Towards historical R-trees. In: Symposium on applied computing, pp 235–240. ACMGoogle Scholar
  96. 96.
    Nascimento MA, Silva JR, Theodoridis Y (1999) Evaluation of access structures for discretely moving points. In: Spatio-temporal database management, pp 171–189. SpringerGoogle Scholar
  97. 97.
    Nguyen T, He Z, Chen YPP (2012) SeTPR*-tree: Efficient buffering for spatiotemporal indexes via shared execution. Comput J 56(1):115–137Google Scholar
  98. 98.
    Nguyen T, He Z, Zhang R, Ward P (2012) Boosting moving object indexing through velocity partitioning. The Proceedings of the VLDB Endowment (PVLDB’12) 5(9):860–871Google Scholar
  99. 99.
    Nguyen-Dinh LV, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003-2010). IEEE Data Eng Bull 33(2):46–55Google Scholar
  100. 100.
    Ni J, Ravishankar CV (2005) PA-Tree: A parametric indexing scheme for spatio-temporal trajectories. In: International symposium on spatial and temporal databases, pp 254–272. SpringerGoogle Scholar
  101. 101.
    Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable, symmetric multikey file structure. ACM Trans Database Syst (TODS) 9(1):38–71Google Scholar
  102. 102.
    Orenstein JA, Merrett TH (1984) A class of data structures for associative searching. In: Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems (PODS), pp 181–190. ACMGoogle Scholar
  103. 103.
    Patel JM, Chen Y, Chakka VP (2004) STRIPES: An efficient index for predicted trajectories. In: The international conference on management of data (SIGMOD’04), pp 637–646Google Scholar
  104. 104.
    Patroumpas K, Sellis T (2009) Monitoring orientation of moving objects around focal points. In: International symposium on spatial and temporal databases, pp 228–246. SpringerGoogle Scholar
  105. 105.
    Pelanis M, Šaltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM Trans Database Syst (TODS) 31 (1):255–298Google Scholar
  106. 106.
    Pfoser D, Jensen CS, Theodoridis Y et al (2000) Novel approaches to the indexing of moving object trajectories. In: The Proceedings of the VLDB Endowment (PVLDB’00), pp 395–406Google Scholar
  107. 107.
    Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2010) PARINET: A tunable access method for in-network trajectories. In: The IEEE international conference on data engineering (ICDE’10), pp 177–188. IEEEGoogle Scholar
  108. 108.
    Porkaew K, Lazaridis I, Mehrotra S (2001) Querying mobile objects in spatio-temporal databases. In: International symposium on spatial and temporal databases (SSTD’01), pp 59–78. SpringerGoogle Scholar
  109. 109.
    Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10):1124–1140Google Scholar
  110. 110.
    Procopiuc CM, Agarwal PK, Har-Peled S (2002) Star-tree: an efficient self-adjusting index for moving objects. In: Workshop on algorithm engineering and experimentation, pp 178–193. SpringerGoogle Scholar
  111. 111.
    Pugh W (1990) Concurrent maintenance of lists. In: Dept. of computer science, university of maryland, college parkGoogle Scholar
  112. 112.
    Ranu S, Deepak P, Telang AD, Deshpande P, Raghavan S (2015) Indexing and matching trajectories under inconsistent sampling rates. In: The IEEE international conference on data engineering (ICDE’15), pp 999–1010Google Scholar
  113. 113.
    Ray S (2014) Towards high performance spatio-temporal data management systems. In: The IEEE international conference on mobile data management (MDM’14), vol 2, pp 19–22Google Scholar
  114. 114.
    Romero M, Brisaboa N, Rodríguez MA (2012) The SMO-index: A succinct moving object structure for timestamp and interval queries. In: Advances in geographic information systems, pp 498–501Google Scholar
  115. 115.
    Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based services. In: International conference on data engineering (ICDE’02), pp 463–472. IEEEGoogle Scholar
  116. 116.
    Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. In: International conference on management of data (SIGMOD’00), vol 29, pp 331–342. ACMGoogle Scholar
  117. 117.
    Sandu Popa I, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. Intern J Very Large Data Bases (VLDB J) 20(5):643–669Google Scholar
  118. 118.
    Schmiegelt P, Behrend A, Seeger B, Koch W (2014) A concurrently updatable index structure for predicted paths of moving objects. Data Knowl Eng 93:80–96Google Scholar
  119. 119.
    Senechal M (1993) Spatial tessellations: Concepts and applications of voronoi diagrams. Science 260(5111):1170–1173Google Scholar
  120. 120.
    Seo DM, Song SI, Park YH, Yoo JS, Kim MH (2008) Bdh-tree: A B+-tree based indexing method for very frequent updates of moving objects. In: International symposium on computer science and its applications (CSA’08), pp 314–319. IEEEGoogle Scholar
  121. 121.
    Shen B, Zhao Y, Li G, Zheng W, Qin Y, Yuan B, Rao Y (2017) V-Tree: Efficient kNN search on moving objects with road-network constraints. In: The IEEE international conference on data engineering (ICDE’17), pp 609–620Google Scholar
  122. 122.
    Šidlauskas D, Ross K, Jensen C, Šaltenis S (2011) Thread-level parallel indexing of update intensive moving-object workloads. Adv Spatial Temporal Database 6849:186–204Google Scholar
  123. 123.
    Šidlauskas D, Šaltenis S, Christiansen CW, Johansen JM, Šaulys D (2009) Trees or grids?: indexing moving objects in main memory. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’09), pp 236–245Google Scholar
  124. 124.
    Šidlauskas D, Šaltenis S, Jensen CS (2012) Parallel main-memory indexing for moving-object query and update workloads. In: The international conference on management of data (SIGMOD’12), pp 37–48Google Scholar
  125. 125.
    Silva YN, Xiong X, Aref WG (2009) The RUM-tree: supporting frequent updates in R-trees using memos. Intern J Very Large Data Bases (VLDB J) 18 (3):719–738Google Scholar
  126. 126.
    Singh M, Zhu Q, Jagadish H (2012) SWST: A disk based index for sliding window spatio-temporal data. In: The IEEE international conference on data engineering (ICDE’12), pp 342–353Google Scholar
  127. 127.
    Skovsgaard A, Sidlauskas D, Jensen CS (2014) Scalable top-k spatio-temporal term querying. In: The IEEE international conference on data engineering (ICDE’14), pp 148–159Google Scholar
  128. 128.
    Song Z, Roussopoulos N (2001) Hashing moving objects. In: International conference on mobile data management (MDM’01), pp 161–172. SpringerGoogle Scholar
  129. 129.
    Song Z, Roussopoulos N (2003) SEB-Tree: An approach to index continuously moving objects. In: International conference on mobile data management (MDM’03), pp 340–344. SpringerGoogle Scholar
  130. 130.
    Stantic B, Topor R, Terry J, Sattar A (2010) Advanced indexing technique for temporal data. Computer Science and Information Systems 7(4):679–703Google Scholar
  131. 131.
    Tanimoto S, Pavlidis T (1975) A hierarchical data structure for picture processing. Comput Graphics Image Process 4(2):104–119Google Scholar
  132. 132.
    Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with unknown motion patterns. In: International conference on management of data (SIGMOD’04), pp 611–622. ACMGoogle Scholar
  133. 133.
    Tao Y, Papadias D (2001) Efficient historical R-trees. In: The international conference on scientific and statistical database management (SSDBM’01), p 0223. IEEEGoogle Scholar
  134. 134.
    Tao Y, Papadias D (2001) MV3R-tree: A spatio-temporal access method for timestamp and interval queries. In: The Proceedings of the VLDB Endowment (PVLDB’01), pp 431–440Google Scholar
  135. 135.
    Tao Y, Papadias D, Sun J (2003) The TPR*-tree: An optimized spatio-temporal access method for predictive queries. In: International conference on very large data bases (PVLDB’03), pp 790–801. VLDB endowmentGoogle Scholar
  136. 136.
    Tayeb J, Ulusoy Ö, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J 41(3):185–200Google Scholar
  137. 137.
    That DHT, Popa IS, Zeitouni K (2015) TRIFL: A generic trajectory index for flash storage. ACM Trans Spatial Algorithm Syst 1(2):6Google Scholar
  138. 138.
    Theodoridis Y, Vazirgiannis M, Sellis T (1996) Spatio-temporal indexing for large multimedia applications. In: International conference on multimedia computing and systems, pp 441–448. IEEEGoogle Scholar
  139. 139.
    To QC, Dang TK, Kung J (2011) OST-Tree: An access method for obfuscating spatio-temporal data in location based services. In: International conference on new technologies, mobility and security (NTMS’11), pp 1–5. IEEEGoogle Scholar
  140. 140.
    Toshniwal A, Taneja S, et al. (2014) Storm@ twitter. In: The international conference on management of data (SIGMOD’14), pp 147–156Google Scholar
  141. 141.
    Tung HDT, Jung YJ, Lee EJ, Ryu KH (2004) Moving point indexing for future location query. In: International conference on conceptual modeling, pp 79–90. SpringerGoogle Scholar
  142. 142.
    (2018) Twitter. https://twitter.com
  143. 143.
    Tzouramanis T, Vassilakopoulos M, Manolopoulos Y (1998) Overlapping linear quadtrees: a spatio-temporal access method. In: International symposium on advances in geographic information systems, pp 1–7. ACMGoogle Scholar
  144. 144.
    Ulrich T (2000) Loose octrees. Game Programming Gems 1:434–442Google Scholar
  145. 145.
    Valdés F, Güting RH (2017) Index-supported pattern matching on tuples of time-dependent values. GeoInformatica 21(3):429–458Google Scholar
  146. 146.
    Wang H, Belhassena A (2017) Parallel trajectory search based on distributed index. Inf Sci 388:62–83Google Scholar
  147. 147.
    Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale GPS track retrieval. In: International conference on mobile data management (MDM’08), pp 1–8. IEEEGoogle Scholar
  148. 148.
    Wang S, Bao Z, Culpepper JS, Sellis T, Sanderson M, Qin X (2017) Answering top-k exemplar trajectory queries. In: The IEEE international conference on data engineering (ICDE’17), pp 597–608. IEEEGoogle Scholar
  149. 149.
    Wang X, Zhang Y, Zhang W, Lin X, Wang W (2015) AP-Tree: Efficiently support location-aware publish/subscribe. Intern J Very Large Data Bases (VLDB J.) 24(6):823–848Google Scholar
  150. 150.
    Xu X, Lu JHW (1990) RT-tree: An improved R-tree indexing structure for temporal spatial databases. In: The international symposium on spatial data handling, pp 1040–1049Google Scholar
  151. 151.
    Xie X, Lu H, Pedersen TB (2013) Efficient distance-aware query evaluation on indoor moving objects. In: The IEEE international conference on data engineering (ICDE’13), pp 434–445. IEEEGoogle Scholar
  152. 152.
    Xie X, Mei B, Chen J, Du X, Jensen CS (2016) Elite: an elastic infrastructure for big spatiotemporal trajectories. Intern J Very Large Data Bases (VLDB J) 25(4):473–493Google Scholar
  153. 153.
    Xiong X, Aref WG (2006) R-trees with update memos. In: The IEEE international conference on data engineering (ICDE’06), pp 22–22Google Scholar
  154. 154.
    Xiong X, Mokbel MF, Aref WG (2006) LUGRid: Update-tolerant grid-based indexing for moving objects. In: International conference on mobile data management (MDM’13), p 13Google Scholar
  155. 155.
    Xu X, Xiong L, Sunderam V (2016) D-grid: an in-memory dual space grid index for moving object databases. In: The IEEE international conference on mobile data management (MDM’16), pp 252–261Google Scholar
  156. 156.
    Xu X, Xiong L, Sunderam V, Liu J, Luo J (2015) Speed partitioning for indexing moving objects. In: The international symposium on spatial and temporal databases (SSTD’15), pp 216–234Google Scholar
  157. 157.
    Xu Y, Tan G (2014) Sim-Tree: indexing moving objects in large-scale parallel microscopic traffic simulation. In: ACM Conference on principles of advanced discrete simulation (PADS) (SIGSIM’14), pp 51–62Google Scholar
  158. 158.
    YAN Qy, MENG Fr (2004) Multiple version TPR-tree. Comput Eng Design 10:057Google Scholar
  159. 159.
    Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on World Wide Web, pp 1445–1456. ACMGoogle Scholar
  160. 160.
    Yao B, Li F, Hadjieleftheriou M, Hou K (2010) Approximate string search in spatial databases. In: The IEEE international conference on data engineering (ICDE’10), pp 545–556. IEEEGoogle Scholar
  161. 161.
    Yiu ML, Tao Y, Mamoulis N (2008) The Bdual-tree: Indexing moving objects by space filling curves in the dual space. Intern J Very Large Data Bases (VLDB J) 17(3):379–400Google Scholar
  162. 162.
    Yu Z, Liu Y, Yu X, Pu KQ (2015) Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans Knowl Data Eng (TKDE) 27(5):1383–1396Google Scholar
  163. 163.
    Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ et al (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65Google Scholar
  164. 164.
    Zäschke T, Zimmerli C, Norrie MC (2014) The PH-tree: A space-efficient storage structure and multi-dimensional index. In: The international conference on management of data (SIGMOD’14), pp 397–408Google Scholar
  165. 165.
    Zheng B, Yuan NJ, Zheng K, Xie X, Sadiq S, Zhou X (2015) Approximate keyword search in semantic trajectory database. In: The IEEE international conference on data engineering (ICDE’15), pp 975–986. IEEEGoogle Scholar
  166. 166.
    Zheng K, Shang S, Yuan NJ, Yang Y (2013) Towards efficient search for activity trajectories. In: The IEEE international conference on data engineering (ICDE’13), pp 230–241. IEEEGoogle Scholar
  167. 167.
    Zheng K, Trajcevski G, Zhou X, Scheuermann P (2011) Probabilistic range queries for uncertain trajectories on road networks. In: The international conference on extending database technology (EDBT’11), pp 283–294Google Scholar
  168. 168.
    Zheng K, Zheng B, Xu J, Liu G, Liu A, Li Z (2016) Popularity-aware spatial keyword search on activity trajectories. World Wide Web 4(20):749–773Google Scholar
  169. 169.
    Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G (2005) Close pair queries in moving object databases. In: Proceedings of the 13th annual ACM international workshop on Geographic information systems, pp 2–11. ACMGoogle Scholar
  170. 170.
    Zhu Y, Ren X, Feng J (2006) NCO-Tree: A spatio-temporal access method for segment-based tracking of moving objects. In: International conference on knowledge-based and intelligent information and engineering systems, pp 1191–1198. SpringerGoogle Scholar
  171. 171.
    Zhu Y, Wang S, Zhou X, Zhang Y (2013) RUM+-Tree: A new multidimensional index supporting frequent updates. In: The international conference on web-age information management (WAIM’13), pp 235–240Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations