Using agent-based modelling to simulate social-ecological systems across scales

  • Melvin LippeEmail author
  • Mike Bithell
  • Nick Gotts
  • Davide Natalini
  • Peter Barbrook-Johnson
  • Carlo Giupponi
  • Mareen Hallier
  • Gert Jan Hofstede
  • Christophe Le Page
  • Robin B. Matthews
  • Maja Schlüter
  • Peter Smith
  • Andrea Teglio
  • Kevin Thellmann


Agent-based modelling (ABM) simulates Social-Ecological-Systems (SESs) based on the decision-making and actions of individual actors or actor groups, their interactions with each other, and with ecosystems. Many ABM studies have focused at the scale of villages, rural landscapes, towns or cities. When considering a geographical, spatially-explicit domain, current ABM architecture is generally not easily translatable to a regional or global context, nor does it acknowledge SESs interactions across scales sufficiently; the model extent is usually determined by pragmatic considerations, which may well cut across dynamical boundaries. With a few exceptions, the internal structure of governments is not included when representing them as agents. This is partly due to the lack of theory about how to represent such as actors, and because they are not static over the time-scales typical for social changes to have significant effects. Moreover, the relevant scale of analysis is often not known a priori, being dynamically determined, and may itself vary with time and circumstances. There is a need for ABM to cross the gap between micro-scale actors and larger-scale environmental, infrastructural and political systems in a way that allows realistic spatial and temporal phenomena to emerge; this is vital for models to be useful for policy analysis in an era when global crises can be triggered by small numbers of micro-level actors. We aim with this thought-piece to suggest conceptual avenues for implementing ABM to simulate SESs across scales, and for using big data from social surveys, remote sensing or other sources for this purpose.


Agent-based modelling Social-ecological systems Cross-scale ABM SESs 



This paper originated from discussions during the Lorentz Center workshop ‘Cross-Scale Resilience in Socio-Ecological Simulations’ in Leiden 1–4 May 2017. The authors would like to thank in particular Géraldine Abrami, Bruce Edmonds, Eline de Jong, Gary Polhill and Nanda Wijermans for organising the workshop, and the Lorentz Center for hosting and providing financial support. Maja Schlüter acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682472 – MUSES). The input of Pete Smith contributes to the DEVIL project [NE/M021327/1]. Kevin Thellmann acknowledges funding from the Water-People-Agriculture Research Training Group funded by the Anton & Petra Ehrmann-Stiftung. Nick Gotts acknowledges help from the Centre for Policy Modelling, Manchester Metropolitan University Business School, where he is a visiting fellow. Melvin Lippe acknowledges funding form the German Federal Ministry of Food and Agriculture due to a decision by the German Bundestag through the LaForeT Policies project.


  1. 1.
    Berkes F, Folke C (1998) Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Redman CL, Grove JM, Kuby LH (2004) Integrating Social Sciences into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change. Ecosystems 7(2):161–171CrossRefGoogle Scholar
  3. 3.
    Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive Governance of Social-Ecological Systems. Annu Rev Environ Resour 30:441–473CrossRefGoogle Scholar
  4. 4.
    Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, Syvitski J (2016) Methods and approaches to modelling in the Anthropocene. Glob Environ Chang 39:328–340CrossRefGoogle Scholar
  5. 5.
    Anderies JM, Janssen MA, Ostrom E (2004) A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective. Ecol Soc 9(1):18CrossRefGoogle Scholar
  6. 6.
    McGinnis MD, Ostrom E (2014) Social-ecological systems framework: initial changes and continuing challenges. Ecol Soc 19(2):30CrossRefGoogle Scholar
  7. 7.
    Leslie HM, Basurto X, Nenadovic M, Sievanen L, Cavanaugh KC, Cota-Nieto JJ, Erisman BE, Finkbeiner E, Hinojosa-Arango G, Moreno-Báez M, Nagavarapu S, Reddy SM, Sánchez-Rodríguez A, Siegel K, Ulibarria-Valenzuela JJ, Weaver AH, Aburto-Oropeza O (2015) Operationalizing the social-ecological systems framework to assess sustainability. PNAS 112(19):5979–5984CrossRefGoogle Scholar
  8. 8.
    Polhill JG, Filatova T, Schlüter M, Voinov A (2016) Modelling systemic change in coupled socio-environmental systems. Environ Model Softw 75:318–332CrossRefGoogle Scholar
  9. 9.
    Schlüter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, Hölker F, Milner-Gulland EJ, Müller B, Nicholson E, Quaas M, Stöven M (2012) New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat Resour Model 25(1):219–272CrossRefGoogle Scholar
  10. 10.
    Virapongse A, Brooks S, Metcalf EC, Zedalis M, Gosz J, Kliskey A, Alessa L (2016) A socio-ecological systems approach for environmental management. J Environ Manag 178:83–91CrossRefGoogle Scholar
  11. 11.
    An L (2012) Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol Model 229:25–36CrossRefGoogle Scholar
  12. 12.
    Filatova T, Verburg PH, Parker DC, Stannard CA (2013) Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ Model Softw 45:1–7CrossRefGoogle Scholar
  13. 13.
    Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22(10):1147–1459CrossRefGoogle Scholar
  14. 14.
    Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann Assoc Am Geogr 93(2):314–337CrossRefGoogle Scholar
  15. 15.
    Balbi S, Giupponi C (2009) Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability. Working Paper Department of Economics, Ca’ Foscari University of Venice, No. 15/WP/2009, ISSN: 1827/336XGoogle Scholar
  16. 16.
    Groeneveld J, Müller B, Buchmann CM, Dressler G, Guo C, Hase N, Hoffmann F, John F, Klasseert C, Lauf T, Liebelt V, Nolzen H, Pannicke N, Schulze J, Weise H, Schwarz N (2017) Theoretical foundations of human decision-making in agent-based land use models - A review. Environ Model Softw 87:39–48CrossRefGoogle Scholar
  17. 17.
    Heckbert S, Baynes T, Reeson A (2010) Agent-based modelling in ecological economics. Ann N Y Acad Sci 1185:39–53CrossRefGoogle Scholar
  18. 18.
    Rounsevell MDA, Robinson DT, Murray-Rust D (2012a) From actors to agents in socio-ecological systems models. Philos Trans R Soc B Biol Sci 367:259–269CrossRefGoogle Scholar
  19. 19.
    Schulze J, Müller B, Groeneveld J, Grimm V (2017) Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. Journal of Artificial Societies and Social Simulation 20(2):8CrossRefGoogle Scholar
  20. 20.
    Gog JL, Pellis L, Wood JLN, McLean AR, Arinaminpathy N, Lloyd-Smith JO (2015) Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics 10:45–48CrossRefGoogle Scholar
  21. 21.
    Delli Gatti D, Gallegati M, Greenwald B, Russo A, Stiglitz JE (2010) The financial accelerator in an evolving credit network. J Econ Dyn Control 34:1627–1650CrossRefGoogle Scholar
  22. 22.
    Stiglitz JE, Gallegati M (2011) Heterogeneous Interacting Agent Models for Understanding Monetary Economies. East Econ J 37:6–12CrossRefGoogle Scholar
  23. 23.
    Waldrop MM (2018) Free Agents. Science 360:144–147CrossRefGoogle Scholar
  24. 24.
    Kiyono K, Struzik ZR, Yamamoto Y (2006) Criticality and Phase Transitions in Stock-Price Fluctuations. Phys Rev Lett 96:068701CrossRefGoogle Scholar
  25. 25.
    Arneth A, Brown C, Rounsevell MDA (2014) Global models of human decision-making for land-based mitigation and adaptation assessment. Nat Clim Chang 4:550–558CrossRefGoogle Scholar
  26. 26.
    Rounsevell MDA, Pedroli B, Erb K-H, Gramberger M, Busck AG, Haberl H, Kristensen S, Kuemmerle T, Lavorel S, Lindner M, Lotze-Campen H, Metzger MJ, Murray-Rust D, Popp A, Perez-Souba M, Reenberg A, Vadineanu A, Verburg PH, Wolfslehner B (2012b) Challenges for land system science. Land Use Policy 29(4):899–910CrossRefGoogle Scholar
  27. 27.
    Haining R (2003) Spatial Data Analysis: Theory and Practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. 28.
    Lloyd CD (2014) Exploring spatial scale in Geography. Wiley, ChichesterCrossRefGoogle Scholar
  29. 29.
    Marston SA, Jones JP III, Woodward K (2005) Human Geography without Scale. Trans Inst Br Geogr 30:416–432CrossRefGoogle Scholar
  30. 30.
    Montello DR (2001) Scale in Geography. In: Baltes B (ed) Smelser NJ. Elsevier, International Encyclopedia of the Social and Behavioral Sciences, pp 13501–13504Google Scholar
  31. 31.
    Gibson CC, Ostrom E, Ahn TK (2000) The concept of scale and the human dimensions of global change: a survey. Ecol Econ 32(2):217–239CrossRefGoogle Scholar
  32. 32.
    Cash DW, Adger NW, Berkes F, Garden P, Lebel L, Olsson P, Pritchard L, Young O (2006) Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol Soc 11(2):8CrossRefGoogle Scholar
  33. 33.
    Lebel L, Garden P, Imamura M (2005) The politics of scale, position and place in the management of water resources in the Mekong region. Ecol Soc 10(2):18CrossRefGoogle Scholar
  34. 34.
    Young O (2006) Vertical interplay among scale-dependent environmental and resource regimes. Ecol Soc 11(1):27CrossRefGoogle Scholar
  35. 35.
    Gotts NM, Polhill JG (2006) Simulating Socio-Techno-Ecosystems. Proceedings of the First World Congress on Social Simulation (WCSS 2006), Kyoto University, Kyoto, Japan, 21–25 August 2006, pp 119–126Google Scholar
  36. 36.
    Hofstede GJ (2018) Mental Activity and Culture: The Elusive Real World. In: Faucher C (ed) Advances in Culturally-Aware Intelligent Systems and in Cross-Cultural Psychological Studies. Springer International Publishing, Cham, pp 143–164CrossRefGoogle Scholar
  37. 37.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  38. 38.
    Schlüter M, Baeza A, Dressler G, Frank K, Groeneveld J, Jager W, Jansse MA, McAllister RRJ, Müller B, Orach K, Schwarz N, Wijermans N (2017) A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecol Econ 131:21–35CrossRefGoogle Scholar
  39. 39.
    Hofstede GJ (2017) GRASP agents: social first, intelligent later. AI & Soc:1–9Google Scholar
  40. 40.
    Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci 106(5):1305–1312CrossRefGoogle Scholar
  41. 41.
    Müller D, Munroe DK (2014) Current and Future Challenges in Land-Use Science. Journal of Land Use Science 9(2):133–142CrossRefGoogle Scholar
  42. 42.
    Colander D (2006) Post Walrasian Macroeconomics: Beyond the Dynamic Stochastic General Equilibrium Model. Cambridge University Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Sonnenschein H (1972) Market Excess Demand Functions. Econometrica 40(3):549–563CrossRefGoogle Scholar
  44. 44.
    Debreu G (1974) Excess Demand Functions. J Math Econ 1(1):15–23CrossRefGoogle Scholar
  45. 45.
    Kirman AP (1992) Whom or What Does the Representative Individual Represent? J Econ Perspect 6(2):117–136CrossRefGoogle Scholar
  46. 46.
    Balke T, Gilbert N (2014) How Do Agents Make Decisions? A Survey. Journal of Artificial Societies and Social Simulation 17(4):13CrossRefGoogle Scholar
  47. 47.
    Epstein JM, Axtell RL (1996) Growing Artificial Societies: Social Science from the Bottom Up. Press, The MITCrossRefGoogle Scholar
  48. 48.
    Tesfatsion L, Judd KL (2006) Handbook of Computational Economics. Vol. 2, Agent-Based Computational Economics. Elsevier, AmsterdamGoogle Scholar
  49. 49.
    LeBaron B, Tesfatsion L (2008) Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents. Am Econ Rev 98(2):246–250CrossRefGoogle Scholar
  50. 50.
    Raberto M, Teglio A, Cincotti S (2012) Debt Deleveraging and Business Cycles. An Agent-Based Perspective. Economics: The Open-Access, Open-Assessment E-Journal
  51. 51.
    Delli Gatti D, Di Guilmi C, Gaffeo E, Giulioni G, Gallegati M, Palestrini A (2005) A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility. J Econ Behav Organ 56(4):489–512CrossRefGoogle Scholar
  52. 52.
    Farmer JD, Hepburn C, Mealy P, Teytelboym A (2015) A Third Wave in the Economics of Climate Change. Environ Resour Econ 62(2):329–357CrossRefGoogle Scholar
  53. 53.
    Lamperti F, Dosi G, Napoletano M, Roventini A, Sapio A (2017a) Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-Based Integrated Assessment Model LEM Working Paper Series. Available at SSRN: or
  54. 54.
    Lustick IS, Alcorn B, Garces M, Ruvinsky A (2012) From theory to simulation: the dynamic political hierarchy in country virtualisation models. Journal of Experimental & Theoretical Artificial Intelligence 24(3):279–299CrossRefGoogle Scholar
  55. 55.
    Natalini D, Bravo G, Jones AW (2017) Global food security and food riots–an agent-based modelling approach. Food Security:1–21.
  56. 56.
    Ferrier S, Ninan KN, Leadly P, Alkemade R, Acosta LA, Akçakaya HR, Brotons L, Cheung WWL, Christensen V, Harhash KA, Kabubo-Mariara J, Lundquist C, Obersteiner M., Pereira HM, Peterson G, Pichs-Madruga R, Ravindranath N, Rondinini C, Wintle BA (2016) IPBES (2016): The methodological assessment report on scenarios and models of biodiversity and ecosystem services. Secretariat of the Intergovernmental. Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, GermanyGoogle Scholar
  57. 57.
    Gilbert N, Ahrweiler P, Barbrook-Johnson P, Narasimhan KP, Wilkinson H (2018) Computational Modelling of Public Policy: Reflections on Practice. Journal of Artificial Societies and Social Simulation 21(1):14CrossRefGoogle Scholar
  58. 58.
    Janssen MA, Walker BH, Langridge J, Abel N (2000) An adaptive agent model for analysing co-evolution of management and policies in a complex rangeland system. Ecol Model 131(2–3):249–268CrossRefGoogle Scholar
  59. 59.
    Gross JE, McAllister RJJ, Abel N, Stafford Smith DM, Maru Y (2006) Australian rangelands as complex adaptive systems: A conceptual model and preliminary results. Environ Model Softw 21(9):1264–1272CrossRefGoogle Scholar
  60. 60.
    Cioffi-Revilla C, Rouleau M (2010) MASON RebeLand: An agent-based model of Politics, Environment, and Insurgency. Int Stud Rev 12(1):31–52CrossRefGoogle Scholar
  61. 61.
    Gerst MD, Wang P, Roventini A, Fagiolo G, Dosi G, Howarth RB, Borsuk ME (2013) Agent-based modelling of climate policy: An introduction to the ENGAGE multi-level model framework. Environ Model Softw 44:62–75CrossRefGoogle Scholar
  62. 62.
    Greeven S, Kraan O, Chappin EJL, Kwakkel JH (2016) The Emergence of Climate Change Mitigation Action by Society: An Agent-based Scenario Discovery Study. Journal of Artificial Societies and Social Simulation 19(3):9CrossRefGoogle Scholar
  63. 63.
    Dubbelboer J, Nikolic I, Jenkins K, Hall J (2017) An Agent-based Model of Flood Risk and Insurance. Journal of Artificial Societies and Social Simulation 20(1):6CrossRefGoogle Scholar
  64. 64.
    Muis J (2010) Simulating Political Stability and Change in the Netherlands (1998–2010): an Agent-Based Model of Party Competition with Media Effects Empirically Tested. Journal of Artificial Societies and Social Simulation 13(2):4CrossRefGoogle Scholar
  65. 65.
    Brondizio ES, Ostrom E, Young OR (2009) Connectivity and the Governance of Multilevel Social-Ecological Systems. Annu Rev Environ Resour 34:253–278CrossRefGoogle Scholar
  66. 66.
    Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422CrossRefGoogle Scholar
  67. 67.
    Armitage DR, Plummer R, Berkes F, Arthur RI, Charles AT, Davidson-Hunt IJ, Diduck AP, Doubleday NC, Johnson DS, Marschke M, McConney P, Pinkerton EW, Wollenberg EK (2009) Adaptive co-management for social-ecological complexity. Front Ecol Environ 7(2):95–102CrossRefGoogle Scholar
  68. 68.
    Grimm V, Ayllón D, Railsback SF (2017) Next-generation Individual-Based Models Integrate Biodiversity and Ecosystems: Yes We Can and Yes We Must. Ecosystems 20(2):229–236CrossRefGoogle Scholar
  69. 69.
    Luus KA, Robinson DT, Deadman PJ (2013) Representing ecological processes in agent-based models of land use and cover change. J Land Use Sci 8(2):175–198CrossRefGoogle Scholar
  70. 70.
    Huigen MGA (2004) First principles of the MameLuke multi-actor modelling framework for land use change, illustrated with a Philippine case study. J Environ Manag 72(1–2):5–21CrossRefGoogle Scholar
  71. 71.
    Bakker MM, Govers G, Kosmas C, Vanacker V, van Oost K, Rounsevell MDA (2005) Soil Erosion as a Driver of Land-Use Change. Agric Ecosyst Environ 105(3):467–481CrossRefGoogle Scholar
  72. 72.
    Eichner T, Pethig R (2005) Ecosystem and Economy: An Integrated Dynamic General Equilibrium Approach. J Econ 85(3):213–249CrossRefGoogle Scholar
  73. 73.
    Lindkvist E, Basurto X, Schlüter M (2017) Micro-level explanations for emergent patterns of self-governance arrangements in small-scale fisheries—A modeling approach. PLoS One 12(4):e0175532. CrossRefGoogle Scholar
  74. 74.
    Martin R, Schlüter M (2015) Combining system dynamics and agent-based modeling to analyze social-ecological interactions – an example from modeling restoration of a shallow lake. Frontiers in Environmental Science 3:66CrossRefGoogle Scholar
  75. 75.
    Manson SM (2005) Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico. Agric Ecosyst Environ 111(1–4):47–62CrossRefGoogle Scholar
  76. 76.
    Gaube V, Kaiser C, Wildenberg M, Adensam H, Fleissner P, Kobler J, Lutz J, Schaumberger A, Schaumberger J, Smetschka B, Wolf A, Richter A, Haberl H (2009) Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landsc Ecol 24(9):1149–1165CrossRefGoogle Scholar
  77. 77.
    Bagstad KJ, Johnson GW, Voigt B, Villa F (2013) Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst Serv 4:117–125CrossRefGoogle Scholar
  78. 78.
    Bithell M, Brasington J (2009) Coupling Agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution. Environ Model Softw 24(2):173–190CrossRefGoogle Scholar
  79. 79.
    Guillem EE, Murray-Rust D, Robinson DT, Barnes A, Rounsevell MDA (2015) Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity. Agric Syst 137:12–23CrossRefGoogle Scholar
  80. 80.
    Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359(6375), eaam8328.
  81. 81.
    Purves D, Scharlemann JPW, Harfoot M, Newbold T, Tittensor DP, Hutton J, Emmott S (2013) Ecosystems: Time to model all life on earth. Nature 493:295–297Google Scholar
  82. 82.
    Evans MR, Bithell M, Cornell SJ, Dall SRX, Díaz S, Emmott S, Ernande B, Grimm V, Hodgson DJ, Lewis SL, Mace GM, Morecroft M, Moustakas A, Murphy E, Newbold T, Norris KJ, Petchey O, Smith M, Travis JMJ, Benton TG (2013) Predictive systems ecology. Proc R Soc B 280:20131452. CrossRefGoogle Scholar
  83. 83.
    Harfoot MBJ, Newbold T, Tittensor DP, Emmott S, Hutton J, Lyutsarev V, Smith MJ, Scharlemann JPW, Purves DW (2014) Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model. PLoS Biol 12(4):e1001841. CrossRefGoogle Scholar
  84. 84.
    Titeux N, Henle K, Mihoub J-B, Regos A, Geijzendorffer IR, Cramer W, Verburg PH, Brotons L (2016) Biodiversity scenarios neglect future land-use changes. Glob Chang Biol 22:2505–2515CrossRefGoogle Scholar
  85. 85.
    van Dam KH, Nikolic I, Lukszo Z (2013) Agent-based modelling of Socio-Technical Systems. Agent-Based Social Systems 9, SpringerGoogle Scholar
  86. 86.
    Barber CP, Cochrane MA, Souza CN Jr, Laurance WF (2014) Roads, deforestation and the mitigating effect of protected areas in the Amazon. Biol Conserv 177:203–209CrossRefGoogle Scholar
  87. 87.
    Millington JDA, Xiong H, Peterson S, Woods J (2017) Integrating Modelling approaches for Understanding Telecoupling: Global Food Trade and Local Land Use. Land 6(3):56CrossRefGoogle Scholar
  88. 88.
    Parker DC, Hessl A, Davis SC (2008) Complexity, land-use modeling, and the human dimension: Fundamental challenges for mapping unknown outcome spaces. Geoforum 39(2):789–804CrossRefGoogle Scholar
  89. 89.
    Pacilly FCA, Hofstede GJ, van Bueren ETL, Kessel GJT, Groot JCJ (2018) Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight. Ecol Model 378:1–12CrossRefGoogle Scholar
  90. 90.
    FCA Pacilly (2018) Social-ecological modelling of potato late blight. Managing crop resistance in disease. PhD Thesis, Wageningen University, 175pGoogle Scholar
  91. 91.
    Voinov A, Shugart HH (2013) ‘Integronsters’, integral and integrated modeling. Environ Model Softw 39:149–158CrossRefGoogle Scholar
  92. 92.
    Wolf S, Hinkel J, Hallier M, Bisaro A, Lincke D, Ionescu C, Klein RJT (2013) Clarifying vulnerability definitions and assessments using formalisation. International Journal of Climate Change Strategies and Management 5:54–70CrossRefGoogle Scholar
  93. 93.
    Axelrod R (2006) Agent-based modeling as a bridge between disciplines. In: Tesfatsion L, Judd KL (eds) Handbook of Computational Economics, Elsevier, Vol, vol 2, pp 1565–1584Google Scholar
  94. 94.
    Polhill JG, Gotts NM (2009) Ontologies for transparent integrated human-natural system modelling. Landsc Ecol 24:1255–1267CrossRefGoogle Scholar
  95. 95.
    Janssen S, Andersen E, Athanasiadis IN, van Ittersum M (2008) An European database for integrated assessment and modeling of agricultural systems. In: Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A, Guariso G (eds) Proceedings of the 4th Biennial Meeting of the International Environmental Modeling and Software Society (iEMSs). Barcelona, Spain, pp 719–726Google Scholar
  96. 96.
    Bosch J (2014) Continuous software engineering. Springer International PublishingGoogle Scholar
  97. 97.
    Herbsleb JD (2007) Global Software Engineering: The Future of Socio-technical co-ordination. Future of Software Engineering, 188–198, IEEE Computer SocietyGoogle Scholar
  98. 98.
    Parker J, Epstein JM (2011) A distributed Platform for Global-Scale Agent-Based Models of Disease Transmission. ACM Transactions on Modeling and Computer Simulation 22(1):1–25CrossRefGoogle Scholar
  99. 99.
    Parry HR, Bithell M (2012) Large scale agent-based modelling: A review and guidelines for model scaling. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of Geographical Systems. Springer, Dordrecht, pp 271–308CrossRefGoogle Scholar
  100. 100.
    Smajgl A, Brown DG, Valbuena D, Huigen MGA (2011) Empirical characterisation of agent behaviours in socio-ecological systems. Environ Model Softw 26(7):837–844CrossRefGoogle Scholar
  101. 101.
    Müller-Hansen F, Schlüter M, Mäs M, Donges JF, Kolb JJ, Thonicke K, Heitzig J (2017) Towards representing human behavior and decision making in Earth System models – an overview of techniques and approaches. Earth System Dynamics 8:977–1007CrossRefGoogle Scholar
  102. 102.
    Kitchin R (2013) Big data and human geography: Opportunities, challenges and risks. Dialogues in Human Geography 3(3):262–267CrossRefGoogle Scholar
  103. 103.
    Yang C, Huang Q, Li Z, Liu K, Hu F (2017) Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth 10(1):13–53CrossRefGoogle Scholar
  104. 104.
    Ward JA, Evans AJ, Malleson NS (2016) Dynamic calibration of agent-based models using data assimilation. R Soc Open Sci 3(4):150703CrossRefGoogle Scholar
  105. 105.
    Lee J-S, Filatova T, Ligmann-Zielinska A, Hassani-Mahmooei B, Stonedahl F, Lorscheid I, Voinov A, Polhill G, Sun Z, Parker DC (2015) The complexities of Agent-Based modeling output analysis. Journal of Artificial Societies and Social Simulation 18(4):4CrossRefGoogle Scholar
  106. 106.
    Lamperti F, Roventini A, Sani A (2018) Agent-based model calibration using machine learning surrogates. J Econ Dyn Control 90:366–389CrossRefGoogle Scholar
  107. 107.
    Kattwinkel M, Reichert P (2017) Bayesian parameter inference for individual-based models using a Particle Markov Chain Monte Carlo Method. Environ Model Softw 87:110–119CrossRefGoogle Scholar
  108. 108.
    Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991CrossRefGoogle Scholar
  109. 109.
    Barrett C, Eubank S, Marathe A, Marathe M, Swarup S (2015) Synthetic information environments for policy informatics: a distributed cognition perspective. In: Johnston EW (ed) Governance in the Information Era: Theory and Practice of Policy Informatics. Routledge, New York, pp 267–284Google Scholar
  110. 110.
    Schulz K, Seppelt R, Zehe E, Vogel HJ, Attinger S (2006) Importance of spatial structures in advancing hydrological sciences. Water Resources Research 42:W03S03Google Scholar
  111. 111.
    Saari DG (2010) Aggregation and multilevel design for systems: Finding guidelines. J Mech Des 132(8):081006CrossRefGoogle Scholar
  112. 112.
    Evans TP, Kelley H (2004) Multi-scale analysis of a household level agent-based model of land cover change. J Environ Manag 72(1–2):57–72CrossRefGoogle Scholar
  113. 113.
    Galan JM, Izquierdo LR (2005) Appearances can be deceiving: Lessons learned re-implementing Axelrod's 'Evolutionary approach to norms'. Journal of Artificial Societies and Social Simulation 8(3):2Google Scholar
  114. 114.
    Edwards M, Huet S, Goreaud F, Deffuant G (2003) Comparing an individual-based model of behaviour diffusion with its mean field aggregate approximation. Journal of Artificial Societies and Social Simulation 6(4):9Google Scholar
  115. 115.
    Huet S, Edwards M, Deffuant G (2007) Taking into Account the Variations of Neighbourhood Sizes in the Mean-Field Approximation of the Threshold Model on a Random Network. Journal of Artificial Societies and Social Simulation 10(1):10Google Scholar
  116. 116.
    Pagel J, Fritzsch K, Biedermann R, Schröder B (2008) Annual plants under cyclic disturbance regime: better understanding through model aggregation. Ecol Appl 18:2000–2015CrossRefGoogle Scholar
  117. 117.
    Martin R, Thomas SA (2016) Analyzing regime shifts in agent-based models with equation-free analysis. In: Sauvage S, Sánchez-Pérez JM, Rizzoli AE (eds) 8th International Congress on Environmental Modelling and Software. Toulouse, France, pp 494–502Google Scholar
  118. 118.
    Zou Y, Fonoberov VA, Fonoberova M, Mezic I, Kevrekidis IG (2012) Model reduction for agent-based social simulation: Coarse-graining a civil violence model. Physical Rev E Stat Nonlin Soft Matter Phys 85:066106CrossRefGoogle Scholar
  119. 119.
    Banisch S (2016) Markov chain aggregation for agent-based models. Springer International PublishingGoogle Scholar
  120. 120.
    Hallier M, Hartmann C (2016) Constructing Markov state models of reduced complexity from agent-based simulation data. Social Simulation Conference 2016, Rome, ItalyGoogle Scholar
  121. 121.
    Niedbalski JS, Deng K Mehta PG, Meyn S (2008) Model reduction for reduced order estimation in traffic models. Proceedings American Control Conference 2008, Seattle, USAGoogle Scholar
  122. 122.
    Costanza R (1989) Model goodness of fit: A multiple resolution procedure. Ecol Model 47(3–4):199–215CrossRefGoogle Scholar
  123. 123.
    Pontius RG Jr, Boersma W, Castella J-C, Clarke K, de Nijs T, Dietzel C, Dua Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–37CrossRefGoogle Scholar
  124. 124.
    Magliocca NR, van Vliet J, Brown C, Evans TP, Houet T, Messerli P, Messina JP, Nicholas KA, Ornetsmüller C, Sagebiel J, Schweizer V, Verburg PH, Yu Q (2015) From meta-studies to modeling: Using synthesis knowledge to build broadly applicable process-based land change models. Environ Model Softw 72:10–20CrossRefGoogle Scholar
  125. 125.
    Deodhar S, Bisset K, Chen J, Barrett C, Wilson M Marathe M (2015) EpiCaster: An Integrated Web Application For Situation Assessment and Forecasting of Global Epidemics. Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics.Google Scholar
  126. 126.
    Adger WN, Arnell NW, Tompkins EL (2005a) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86CrossRefGoogle Scholar
  127. 127.
    Balbi S, Giupponi C, Perez P, Alberti M (2013) A spatial agent-based model for assessing strategies of adaptation to climate and tourism demand changes in an alpine tourism destination. Environ Model Softw 45:29–51CrossRefGoogle Scholar
  128. 128.
    Cohen A, McCarthy J (2014) Reviewing rescaling: Strengthening the case for environmental considerations. Prog Hum Geogr 39(1):3–25CrossRefGoogle Scholar
  129. 129.
    Adger WN, Brown K, Tompkins EL (2005b) The Political Economy of Cross-Scale Networks in Resource Co-Management. Ecol Soc 10(2):9CrossRefGoogle Scholar
  130. 130.
    Janssen M, de Vries B (1998) The battle of perspectives: a multi-agent model with adaptive responses to climate change. Ecol Econ 26(1):43–65CrossRefGoogle Scholar
  131. 131.
    Stern N (2016) Current climate models are grossly misleading. Nature 530:407–409CrossRefGoogle Scholar
  132. 132.
    Wiedmann T, Lenzen M (2018) Environmental and social footprints of international trade. Nat Geosci 11:314–321CrossRefGoogle Scholar
  133. 133.
    Janssen MA, Alessa LN, Barton M, Bergin S, Lee A (2008) Towards a Community Framework for Agent-Based Modelling. Journal of Artificial Societies and Social Simulation 11(2):6Google Scholar
  134. 134.
    Rollins ND, Barton CM, Bergin S, Janssen MA, Lee A (2014) A Computational Model Library for publishing model documentation and code. Environ Model Softw 61:59–64CrossRefGoogle Scholar
  135. 135.
    Collier N, North M (2012) Repast HPC: A Platform for Large-Scale Agent-Based Modeling; in: Dubitzky W., Kurowski K, Schott B (Eds.) Large-Scale Computing, 202pGoogle Scholar
  136. 136.
    Vervoort JM, Rutting L, Kok K, Hermans FLP, Veldkamp T, Bregt AK, van Lammeren R (2012) Exploring dimensions, scales, and cross-scale dynamics from the perspectives of change agents in social–ecological systems. Ecol Soc 17(4):24CrossRefGoogle Scholar
  137. 137.
    Smajgl A (2010) Challenging beliefs through multi-level participatory modelling in Indonesia. Environ Model Softw 25(11):1470–1476CrossRefGoogle Scholar
  138. 138.
    Mazzega P, Therond O, Debril T, March H, Sibertin-Blanc C, Lardy R, Sant’Ana D (2014) Critical Multi-level Governance Issues of Integrated Modelling: An Example of Low-Water Management in the Adour-Garonne Basin (France). J Hydrol 519:2515–2526CrossRefGoogle Scholar
  139. 139.
    Castella J-C (2009) Assessing the role of learning devices and geovisualisation tools for collective action in natural resource management: Experiences from Vietnam. J Environ Manag 90(2):1313–1319CrossRefGoogle Scholar
  140. 140.
    d'Aquino P, Bah A (2014) Multi-level participatory design of land use policies in African drylands: A method to embed adaptability skills of drylands societies in a policy framework. J Environ Manag 132:207–219CrossRefGoogle Scholar
  141. 141.
    Delmotte S, Barbier J-M, Mouret J-C, Le Page C, Wery J, Chauvelon P, Sandoz A, Lopez-Ridaura S (2016) Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France. Agric Syst 143:147–158CrossRefGoogle Scholar
  142. 142.
    Lippe M, Hilger T, Sudchalee S, Wechpibal N, Jintrawet A, Cadisch G (2017) Simulating stakeholder-based land-use change scenarios and their implication on Above-Ground Carbon and environmental management in Northern Thailand. Land 6(4):85CrossRefGoogle Scholar
  143. 143.
    Barnaud C, Van Paassen A (2013) Equity, Power Games, and Legitimacy: Dilemmas of Participatory Natural Resource Management. Ecol Soc 18(2):21CrossRefGoogle Scholar
  144. 144.
    Janssen MA (2017) The Practice of Archiving Model Code of Agent-Based Models. Journal of Artificial Societies and Social Simulation 20(1):1–2CrossRefGoogle Scholar
  145. 145.
    Lippe M, Thai Minh T, Neef A, Hilger T, Hoffmann V, Lam NT, Cadisch G (2011) Building on qualitative datasets and participatory process to simulate land use change in a mountain watershed of Northwest Vietnam. Environ Model Softw 26(12):1454–1466CrossRefGoogle Scholar
  146. 146.
    Le Page C, Perrotton A (2017) KILT: A Modelling Approach Based on Participatory Agent-Based Simulation of Stylized Socio-Ecosystems to Stimulate Social Learning with Local Stakeholders. In: Sukthankar G, Rodriguez-Aguilar JA (eds) Autonomous Agents and Multiagent Systems: AAMAS 2017 Workshops. Visionary Papers. Springer, Cham, pp 31–44CrossRefGoogle Scholar
  147. 147.
    Allen CR, Fontaine JJ, Pope KL, Garmestani AS (2011) Adaptive management for a turbulent future. J Environ Manag 92(5):1339–1345CrossRefGoogle Scholar
  148. 148.
    Le Page C, Bobo KS, Kamgaing OWT, Ngahane FB, Waltert M (2015) Interactive simulations with a stylized scale model to codesign with villagers an agent-based model of bushmeat hunting in the periphery of Korup National Park (Cameroon). Journal of Artificial Societies and Social Simulation 18(1):8CrossRefGoogle Scholar
  149. 149.
    Voinov A, Bousquet F (2010) Modelling with stakeholders. Environ Model Softw 25(11):1268–1281CrossRefGoogle Scholar
  150. 150.
    Johnson PG (2015) Agent-based models as “interested amateurs”. Land 4(2):281–299CrossRefGoogle Scholar
  151. 151.
    Lee DB Jr (1973) Requiem for large-scale models. J Am Inst Plann 39(3):163–178CrossRefGoogle Scholar
  152. 152.
    Lee DB (1994) Retrospective on large scale urban models. J Am Plan Assoc 60:35–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Melvin Lippe
    • 1
    Email author
  • Mike Bithell
    • 2
  • Nick Gotts
    • 3
  • Davide Natalini
    • 4
  • Peter Barbrook-Johnson
    • 5
  • Carlo Giupponi
    • 6
  • Mareen Hallier
    • 7
  • Gert Jan Hofstede
    • 8
  • Christophe Le Page
    • 9
  • Robin B. Matthews
    • 10
  • Maja Schlüter
    • 11
  • Peter Smith
    • 12
  • Andrea Teglio
    • 6
  • Kevin Thellmann
    • 13
  1. 1.Thünen Institute of International Forestry and Forest EconomicsHamburgGermany
  2. 2.Department of GeographyUniversity of CambridgeCambridgeUK
  3. 3.EdinburghUK
  4. 4.Global Sustainability InstituteAnglia Ruskin UniversityCambridgeUK
  5. 5.Centre for Research in Social SimulationUniversity of SurreySurreyUK
  6. 6.Department of EconomicsCa’ Foscari University of Venice and Venice International UniversityVeneziaItaly
  7. 7.Institute of MathematicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  8. 8.Information Technology Group, Department of Social SciencesWageningen UniversityWageningenNetherlands
  9. 9.CIRAD, UPR GREENMontpellierFrance
  10. 10.James Hutton InstituteAberdeenUK
  11. 11.Stockholm Resilience CentreStockholm UniversityStockholmSweden
  12. 12.Institute of Biological & Environmental Sciences, School of Biological SciencesUniversity of AberdeenScotlandUK
  13. 13.Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute)University of HohenheimStuttgartGermany

Personalised recommendations