, Volume 21, Issue 3, pp 643–665 | Cite as

Interactive shearing for terrain visualization: an expert study

  • Jonas BuddebergEmail author
  • Bernhard Jenny
  • Wesley Willett


Interpreting terrain in traditional 2D maps can be challenging. However, recent work has shown how interactive shearing of terrain can help users better understand topography and extract elevation information from a map. Using this approach, user input – paired with existing interactions such as pan and zoom – triggers brief ephemeral shearing animations that expose depth and shape information in terrain maps. The animations use motion to enhance the perception of depth and convey the impression of a shaking jelly model that oscillates until it comes to rest. However, it is still unclear how the parameters of these animations impact the effectiveness of the method or if the animations may have negative side effects. Moreover, it is unknown whether interactive relief shearing is accessible enough to be used in common web maps. To investigate these questions, we conducted a user study with 49 cartographers and visualization experts. These experts interactively configured shearing animations and assessed the technique’s usability and applicability. To create a platform for the user study and demonstrate that interactive shearing of terrain is technically feasible in browsers, we implemented a web map with interactive shearing animations. All experts found that interactive relief shearing made it easier to see differences in elevation on orthophoto maps. Future web maps could include shearing animations, making it easier for viewers to interpret terrain and see differences in elevation.


Terrain maps Depth perception Interaction Plan oblique relief Expert study Web maps 



The authors are very grateful to the experts participating in the user study and would like to sincerely thank them: Geoff Aitken, Nick Arnold, Gareth Baldrica-Franklin, Miles Barger, Julien Biland, Susanne Bleisch, Rolf Böhm, Leland Brown, Stefan Buschmann, William Cartwright, Keith Clarke, Arzu Çöltekin, Doris Dransch, Pat Dunlavey, Jason Dykes, Jim Eynard, Sara Fabrikant, Kenneth Field, Nick Forfinski, Julien Gaffuri, Roman Geisthövel, Matthias Gessner, Matt Gregory, Eric Guilbert, Christian Häberling, Matthew Hampton, Magnus Heitzler, Charlotte Hoarau, Sam Hooper, Daniel Huffman, Gabriela Ilieş, Rafal Jonca, Patrick Kennelly, Alexander Kent, Karel Kriz, Felix Kunde, Brooke Marston, Jim Meacham, David Medeiros, Ian Muehlenhaus, Andreas Neumann, Raluca Nicola, Tom Patterson, Dušan Petrovič, Tomaž Podobnikar, Charles Preppernau, Stefan Räber, Luigi Rocca, Arne Rohweder, Timofey Samsonov, Bjørn Sandvik, Harald Schernthanner, Alex Schoedon, Marianna Serebryakova, René Sieber, Roger Smith, Fabian Stenzel, Alex Tait, Hans van der Maarel, Nathaniel Vaughn Kelso, Fabio Veronesi, and Jo Wood.

The authors would like to thank the anonymous reviewers for providing valuable feedback, as well as Felix Bostel, Jane Darbyshire, Johannes Liem, Bojan Šavrič, Kirstin Steinmetz, Nele Steinmetz, Dan Stephen, and Amelie Stolle for beta testing. The authors also thank Google for a Google Faculty Award, and Brooke Marston for editing this article.


  1. 1.
    Patterson T (2000) A view from on high: Heinrich Berann’s panoramas and landscape visualization techniques for the US National Park Service. Cartographic Perspect 36:38–65CrossRefGoogle Scholar
  2. 2.
    Jenny H, Jenny B, Hurni L (2010) Interactive design of 3D maps with progressive projection. Cartogr J 47(3):211–221CrossRefGoogle Scholar
  3. 3.
    Lorenz H, Trapp M, Döllner J, Jobst M (2008) Interactive multi-perspective views of virtual 3D landscape and city models. In: Bernard L, Friis-Christensen A, Pundt H (eds) The European information society. Springer, Berlin, Heidelberg, pp 301–321Google Scholar
  4. 4.
    Möser S, Degener P, Wahl R, Klein R (2008) Context aware terrain visualization for wayfinding and navigation. Computer Graphics Forum 27(7):1853–1860Google Scholar
  5. 5.
    Jenny H, Jenny B, Cartwright WE, Hurni L (2011) Interactive local terrain deformation inspired by hand-painted panoramas. Cartogr J 48(1):11–20CrossRefGoogle Scholar
  6. 6.
    Pasewaldt S, Trapp M, Döllner J (2011) Multiscale visualization of 3D geovirtual environments using view-dependent multi-perspective views. J WSCG 19(3):111–118Google Scholar
  7. 7.
    Pasewaldt S, Semmo A, Trapp M, Döllner J (2014) Multi-perspective 3D panoramas. Int J Geogr Inf Sci 28(10):2030–2051CrossRefGoogle Scholar
  8. 8.
    Willett W, Jenny B, Isenberg T, Dragicevic P (2015) Lightweight relief shearing for enhanced terrain perception on interactive maps. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, New York, pp 3563–3572Google Scholar
  9. 9.
    Goldstein EB (2014) Sensation and perception. Wadsworth Cengage Learning, Belmont, CAGoogle Scholar
  10. 10.
    Knust C, Buchroithner MF (2014) Principles and terminology of true-3D Geovisualisation. Cartogr J 51(3):191–202. doi: 10.1179/1743277413Y.0000000038 CrossRefGoogle Scholar
  11. 11.
    Edler D, Huber O, Knust C, Buchroithner MF, Dickmann F (2014) Spreading map information over different depth layers-an improvement for map-reading efficiency? Cartographica: Int J Geogr Inf Geovisualization 49(3):153–163CrossRefGoogle Scholar
  12. 12.
    Fuhrmann S, Holzbach ME, Black R (2015) Developing interactive geospatial holograms for spatial decision-making. Cartogr Geogr Inf Sci 42(sup1):27–33CrossRefGoogle Scholar
  13. 13.
    Imhof E (2007) Cartographic relief presentation. ESRI, Inc., RedlandsGoogle Scholar
  14. 14.
    Hubona GS, Shirah GW (2005) Spatial cues in 3D visualization. In: Cai Y (ed) Ambient intelligence for scientific discovery. Springer, Berlin, Heidelberg, pp 104–128Google Scholar
  15. 15.
    Jenny B, Patterson T (2007) Introducing plan oblique relief. Cartographic Perspect 57:21–40CrossRefGoogle Scholar
  16. 16.
    Jenny B, Buddeberg J, Hoarau C, Liem J (2015) Plan oblique relief for web maps. Cartogr Geogr Inf Sci 42(5):410–418CrossRefGoogle Scholar
  17. 17.
    Acevedo D, Jackson CD, Drury F, Laidlaw DH (2008) Using visual design experts in critique-based evaluation of 2D vector visualization methods. IEEE Trans Vis Comput Graph 14(4):877–884CrossRefGoogle Scholar
  18. 18.
    Bernabé-Poveda M-A, Çöltekin A (2015) Prevalence of the terrain reversal effect in satellite imagery. Int J Digital Earth 8(8):640–655CrossRefGoogle Scholar
  19. 19.
    Gil M, Arza M, Ortiz J, Ávila A (2014) DEM shading method for the correction of pseudoscopic effect on multi-platform satellite imagery. GIScience & Remote Sens 51(6):630–643CrossRefGoogle Scholar
  20. 20.
    Biland J, Çöltekin A (2016) An empirical assessment of the impact of the light direction on the relief inversion effect in shaded relief maps: NNW is better than NW. Cartogr Geogr Inf Sci 1–15. doi: 10.1080/15230406.2016.1185647
  21. 21.
    Bos JE, Bles W, Groen EL (2008) A theory on visually induced motion sickness. Displays 29(2):47–57CrossRefGoogle Scholar
  22. 22.
    Diels C, Howarth PA (2011) Visually induced motion sickness: single-versus dual-axis motion. Displays 32(4):175–180CrossRefGoogle Scholar
  23. 23.
    Smither JA-A, Mouloua M, Kennedy R (2008) Reducing symptoms of visually induced motion sickness through perceptual training. Int J Aviat Psychol 18(4):326–339CrossRefGoogle Scholar
  24. 24.
    Buddeberg J, Jenny B, Liem J (2014) Plan oblique Europe.
  25. 25.
    Open Geospatial Consortium (2010) OpenGIS web map tile service implementation standard (version 1.0.0).

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of PotsdamPotsdamGermany
  2. 2.School of Science, Geospatial ScienceRMIT UniversityMelbourneAustralia
  3. 3.University of CalgaryCalgaryCanada

Personalised recommendations