, Volume 20, Issue 2, pp 159–178 | Cite as

Cooperative vehicle-infrastructure localization based on the symmetric measurement equation filter

  • Feihu ZhangEmail author
  • Gereon Hinz
  • Dhiraj Gulati
  • Daniel Clarke
  • Alois Knoll


Precise and accurate localization is important for safe autonomous driving. Given a traffic scenario which has multiple vehicles equipped with internal sensors for self-localization, and external sensors from the infrastructure for vehicle localization, vehicle-infrastructure communication can be used to improve the accuracy and precision of localization. However, as the number of vehicles in a scenario increases, associating measurement data with the correct source becomes increasingly challenging. We propose a solution utilizing the symmetric measurement equation filter (SME) for cooperative localization to address data association issue, as it does not require an enumeration of measurement-to-target associations. The principal idea is to define a symmetrical transformation which maps measurements to a homogeneous function, thereby effectively addressing several challenges in vehicle-infrastructure scenarios such as data association, bandwidth limitations and registration/configuration of the external sensor. To the best of our knowledge, the proposed solution is among the first to address all these issues of cooperative localization simultaneously, by utilizing the topology information of the vehicles.


Symmetric measurement equation (SME) filter Data association 



This work is partially supported by the SADA project funded by the German ministry of economics (BMWi), within the program ‘IKT für Elektromobilität III’.


  1. 1.
    Tian F, Wu C, Chu D, Sun C, Zhou T (2014) Experimental design of integrated platform for demonstration of cooperative vehicle infrastructure systems in china. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp 105–108. doi: 10.1109/ITSC.2014.6957674
  2. 2.
    Boasman N, Clarke D, Davison S, Stokes R Advanced test methods for integrated navigation systems, Royal Institute of NavigationGoogle Scholar
  3. 3.
    Laneurit J, Chapuis R, Chausse F (2005) Accurate vehicle positioning on a numerical map. Int J Control Autom Syst 3(1):15–31Google Scholar
  4. 4.
    Zhang F, Staehle H, Chen G, Buckl C, Knoll A (2013) Multiple vehicle cooperative localization under random finite set framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)Google Scholar
  5. 5.
    Chan Lan K, Huang C-M, Tsai C-Z (2008) On the locality of vehicle movement for vehicle-infrastructure communication. In: 8th International Conference on ITS Telecommunications, ITST 2008, pp 116–120. doi: 10.1109/ITST.2008.4740240
  6. 6.
    Roumeliotis S, Rekleitis I (2003) Analysis of multirobot localization uncertainty propagation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol 2, pp 1763–1770. doi: 10.1109/IROS.2003.1248899
  7. 7.
    Fox D, Burgard W, Thrun S (1999) Markov localization for mobile robots in dynamics environments. J Artif Intell Res 11:391–427Google Scholar
  8. 8.
    Howard A, Matark M, Sukhatme G (2002) Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp 434–439. doi: 10.1109/IRDS.2002.1041428
  9. 9.
    Nerurkar E, Roumeliotis S, Martinelli A (2009) Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: IEEE International Conference on Robotics and Automation, ICRA ’09, pp 1402–1409. doi: 10.1109/ROBOT.2009.5152398
  10. 10.
    Kamen E (1992) Multiple target tracking based on symmetric measurement equations. IEEE Trans Autom Control 37(3):371–374. doi: 10.1109/9.119640 CrossRefGoogle Scholar
  11. 11.
    Zhang F, Hinz G, Clarke D, Knoll A (2015) Vehicle-infrastructure localization based on the sme filter. In: 2015 IEEE 18th International Conference on Connected Vehicles and Cooperative Systems Workshop, Intelligent Transportation Systems (ITSC)Google Scholar
  12. 12.
    Swati, Bhaumik S (2012) Multiple target tracking using homogeneous symmetric measurement. In: 2012 1st International Conference on Recent Advances in Information Technology (RAIT), pp 707–712. doi: 10.1109/RAIT.2012.6194581
  13. 13.
    Kamen E, Sastry C (1993) Multiple target tracking using products of position measurements. IEEE Trans Aerosp Electron Syst 29(2):476–493. doi: 10.1109/7.210085 CrossRefGoogle Scholar
  14. 14.
    Karam N, Chausse F, Aufrere R, Chapuis R (2006) Cooperative multi-vehicle localization. In: Intelligent Vehicles Symposium, 2006 IEEE, pp 564–570. doi: 10.1109/IVS.2006.1689688
  15. 15.
    Li H, Nashashibi F (2012) Cooperative multi-vehicle localization using split covariance intersection filter. In: Intelligent Vehicles Symposium (IV), 2012 IEEE, pp 211–216. doi:  10.1109/IVS.2012.6232155, (to appear in print)
  16. 16.
    Roumeliotis S, Bekey G (2002) Distributed multirobot localization. IEEE Trans Robot Autom 18(5):781–795. doi: 10.1109/TRA.2002.803461 CrossRefGoogle Scholar
  17. 17.
    Karam N, Chausse F, Aufrere R, Chapuis R (2006) Localization of a group of communicating vehicles by state exchange. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 519–524. doi: 10.1109/IROS.2006.282028
  18. 18.
    SADA (2015) Smart Adaptive Data Aggregation, BMWi, IKT fur Elektromobilitat III.
  19. 19.
    Fortmann TE, Bar-Shalom Y, Scheffe M (1983) Sonar tracking of multiple targets using joint probabilistic data association. IEEE J Ocean Eng 8(3):173–184. doi: 10.1109/JOE.1983.1145560 CrossRefGoogle Scholar
  20. 20.
    Mahler R (2003) Multitarget bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst 39(4):1152–1178. doi: 10.1109/TAES.2003.1261119 CrossRefGoogle Scholar
  21. 21.
    Giannopoulos E, Streit R, Swaszek P (1996) Probabilistic multi-hypothesis tracking in a multi-sensor, multi-target environment. In: Data Fusion Symposium, 1996. ADFS ’96., First Australian, pp 184–189. doi: 10.1109/ADFS.1996.581104
  22. 22.
    Leven W, Lanterman A (2009) Unscented kalman filters for multiple target tracking with symmetric measurement equations. IEEE Trans Autom Control 54(2):370–375. doi: 10.1109/TAC.2008.2008327
  23. 23.
    Leven WF, Lanterman AD (2004) Multiple target tracking with symmetric measurement equations using unscented kalman and particle filters. In: Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, 2004, pp 195–199. doi: 10.1109/SSST.2004.1295647
  24. 24.
    Baum M, Hanebeck U (2013) The kernel-sme filter for multiple target tracking. In: 2013 16th International Conference on Information Fusion (FUSION), pp 288–295Google Scholar
  25. 25.
    Li X, Jilkov V (2003) Survey of maneuvering target tracking. part i. dynamic models. IEEE Trans Aerosp Electron Syst 39(4):1333–1364. doi: 10.1109/TAES.2003.1261132 CrossRefGoogle Scholar
  26. 26.
    Daum FE (1991) Cramer-rao bound for multiple-target tracking. In: Proc. SPIE, Vol. 1481, pp 341–344. doi: 10.1117/12.45667
  27. 27.
    Kamen EW, Lee YJ, Sastry CR (1994) Parallel sme filter for tracking multiple targets in three dimensions. In: Proc. SPIE, Vol. 2235, pp 417–428. doi: 10.1117/12.179068

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Feihu Zhang
    • 1
    Email author
  • Gereon Hinz
    • 1
  • Dhiraj Gulati
    • 1
  • Daniel Clarke
    • 2
  • Alois Knoll
    • 3
  1. 1.Fortiss GmbHMünchenGermany
  2. 2.Cranfield UniversityCranfieldUnited Kingdom
  3. 3.Institute of Robotics and Embedded SystemsTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations