Advertisement

GeoInformatica

, Volume 20, Issue 1, pp 1–18 | Cite as

SPLZ: An efficient algorithm for single source shortest path problem using compression method

  • Jingwei Sun
  • Guangzhong SunEmail author
Article

Abstract

Efficient solution of the single source shortest path (SSSP) problem on road networks is an important requirement for numerous real-world applications. This paper introduces an algorithm for the SSSP problem using compression method. Owning to precomputing and storing all-pairs shortest path (APSP), the process of solving SSSP problem is a simple lookup of a little data from precomputed APSP and decompression. APSP without compression needs at least 1TB memory for a road network with one million vertices. Our algorithm can compress such an APSP into several GB, and ensure a good performance of decompression. In our experiment on a dataset about Northwest USA (with 1.2 millions vertices), our method can achieve about three orders of magnitude faster than Dijkstra algorithm based on binary heap.

Keywords

Shortest path Compression Road network 

Notes

Acknowledgments

We would like to thank the reviewers for their valuable suggestions, and Shiyan Zhan for the fruitful discussions. This work is supported by Natural Science Foundation of China (No. 61033009 and No. 61303047) and Anhui Provincial Natural Science Foundation (No. 1208085QF106).

References

  1. 1.
    Abraham I, Delling D, Goldberg AV, Werneck RF (2011) A hub-based labeling algorithm for shortest paths in road networks. In: Experimental Algorithms, Springer, pp 230–241Google Scholar
  2. 2.
    Abraham I, Delling D, Fiat A, Goldberg AV, Werneck RF (2012) Hldb: Location-based services in databases. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, ACM, New York, NY, USA, SIGSPATIAL ’12, pp 339–348, doi: 10.1145/2424321.2424365, (to appear in print)
  3. 3.
    Ahuja RK, Mehlhorn K, Orlin J, Tarjan RE (1990) Faster algorithms for the shortest path problem. J ACM (JACM) 37(2):213–223CrossRefGoogle Scholar
  4. 4.
    Arz J, Luxen D, Sanders P (2013) Transit node routing reconsidered. In: Experimental Algorithms, Springer, pp 55–66Google Scholar
  5. 5.
    Bast H, Funke S, Sanders P, Schultes D (2007) Fast routing in road networks with transit nodes. Science 316(5824):566–566CrossRefGoogle Scholar
  6. 6.
    Bell T, Kulp D (1993) Longest-match string searching for ziv-lempel compression. Software: Practice and Experience 23(7):757–771Google Scholar
  7. 7.
    Bellman R (1956) On a routing problem. Tech rep, DTIC DocumentGoogle Scholar
  8. 8.
    Bertsekas DP (1993) A simple and fast label correcting algorithm for shortest paths. Networks 23(8):703–709CrossRefGoogle Scholar
  9. 9.
    Bertsekas DP, Guerriero F, Musmanno R (1996) Parallel asynchronous label-correcting methods for shortest paths. J Optim Theory Appl 88(2):297–320CrossRefGoogle Scholar
  10. 10.
    Botea A, Baier JA, Harabor D, Hernández C (2013) Moving target search with compressed path databases. Proceedings of ICAPS-13Google Scholar
  11. 11.
    Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: Theory and experimental evaluation. Math Program 73(2):129–174CrossRefGoogle Scholar
  12. 12.
    Cherkassky BV, Georgiadis L, Goldberg AV, Tarjan RE, Werneck RF (2009) Shortest-path feasibility algorithms: An experimental evaluation. J Exp Algorithmics (JEA) 14:7Google Scholar
  13. 13.
    Cormen TH, Leiserson CE, Rivest RL, Stein C, et al. (2001) Introduction to algorithms, vol 2. MIT press, CambridgeGoogle Scholar
  14. 14.
    Delling D, Goldberg AV, Nowatzyk A, Werneck RF (2013a) Phast: Hardware-accelerated shortest path trees. J Parallel Distrib Comput 73(7):940–952CrossRefGoogle Scholar
  15. 15.
    Delling D, Goldberg AV, Pajor T, Werneck RF (2013b) Customizable route planning in road networks. In: Sixth Annual Symposium on Combinatorial SearchGoogle Scholar
  16. 16.
    Demetrescu C, Goldberg AV, Johnson DS (2009) The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol 74. American Mathematical SocGoogle Scholar
  17. 17.
    Dial RB (1969) Algorithm 360: Shortest-path forest with topological ordering [h]. Commun ACM 12(11):632–633CrossRefGoogle Scholar
  18. 18.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische mathematik 1(1):269–271CrossRefGoogle Scholar
  19. 19.
    Gallo G, Pallottino S (1986) Shortest path methods: A unifying approach. Netflow at Pisa, pp 38–64Google Scholar
  20. 20.
    Geisberger R, Sanders P, Schultes D, Delling D (2008) Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: Experimental Algorithms, Springer, pp 319–333Google Scholar
  21. 21.
    Glover F, Klingman D, Phillips N (1985) A new polynomially bounded shortest path algorithm. Oper Res 33(1):65–73CrossRefGoogle Scholar
  22. 22.
    Goldberg AV, Harrelson C (2005) Computing the shortest path: A search meets graph theory. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, pp 156–165Google Scholar
  23. 23.
    Hilger M, Köhler E, Möhring RH, Schilling H (2009) Fast point-to-point shortest path computations with arc-flags. The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74:41–72Google Scholar
  24. 24.
    Knuth DE, Morris JH Jr, Pratt VR (1977) Fast pattern matching in strings. SIAM J Comput 6(2):323–350CrossRefGoogle Scholar
  25. 25.
    Madduri K, Bader DA, Berry JW, Crobak JR (2006) Parallel shortest path algorithms for solving large-scale instancesGoogle Scholar
  26. 26.
    Maue J, Sanders P, Matijevic D (2010) Goal-directed shortest-path queries using precomputed cluster distances. J Exp Algorithmics 14:2:3.2–2:3.27. doi: 10.1145/1498698.1564502 Google Scholar
  27. 27.
    Meyer U, Sanders P (2003) δ-stepping: a parallelizable shortest path algorithm. J Algorithms 49(1):114–152CrossRefGoogle Scholar
  28. 28.
    Pallottino S (1984) Shortest-path methods: Complexity, interrelations and new propositions. Networks 14(2):257–267CrossRefGoogle Scholar
  29. 29.
    Pape U (1974) Implementation and efficiency of moore-algorithms for the shortest route problem. Math Program 7(1):212–222CrossRefGoogle Scholar
  30. 30.
    Sanders P, Schultes D (2005) Highway hierarchies hasten exact shortest path queries. In: Algorithms–Esa 2005, Springer, pp 568–579Google Scholar
  31. 31.
    Sankaranarayanan J, Alborzi H, Samet H (2005) Efficient query processing on spatial networks. In: Proceedings of the 13th annual ACM international workshop on Geographic information systems, ACM, pp 200–209Google Scholar
  32. 32.
    Sankaranarayanan J, Samet H, Alborzi H (2009) Path oracles for spatial networks. Proc VLDB Endowment 2(1):1210–1221CrossRefGoogle Scholar
  33. 33.
    Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23(3):337–343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations