Advertisement

GeoInformatica

, Volume 19, Issue 2, pp 299–330 | Cite as

On reverse-k-nearest-neighbor joins

  • Tobias Emrich
  • Hans-Peter Kriegel
  • Peer Kröger
  • Johannes Niedermayer
  • Matthias Renz
  • Andreas Züfle
Article

Abstract

A reverse k-nearest neighbour (RkNN) query determines the objects from a database that have the query as one of their k-nearest neighbors. Processing such a query has received plenty of attention in research. However, the effect of running multiple RkNN queries at once (join) or within a short time interval (bulk/group query) has only received little attention so far. In this paper, we analyze different types of RkNN joins and provide a classification of existing RkNN join algorithms. We discuss possible solutions for solving the non-trivial variants of the problem in vector spaces, including self and mutual pruning strategies. Further, we generalize the developed algorithms to general metric spaces. During an extensive performance analysis we provide evaluation results showing the IO and CPU performance of the compared algorithms for a wide range of different setups and suggest appropriate query algorithms for specific scenarios.

Keywords

Reverse nearest neighbor queries RkNN join Spatial databases 

References

  1. 1.
    Bernecker T, Emrich T, Kriegel H-P, Mamoulis N, Renz M, Zhang S, Züfle A (2011) Inverse queries for multidimensional spaces. In: Proc. SSTD, pp 330–347Google Scholar
  2. 2.
    Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEETC C-22(11):1025–1034Google Scholar
  3. 3.
    Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: Proc. SIGMOD, pp 49–60Google Scholar
  4. 4.
    Hautamäki V, Kärkkäinen I, Fränti P (2004) Outlier detection using k-nearest neighbor graph. In: Proc. ICPR, pp 430–433Google Scholar
  5. 5.
    Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proc. PAKDD, pp 577–593Google Scholar
  6. 6.
    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. KDDGoogle Scholar
  7. 7.
    Korn F, Muthukrishnan S (2000) Influenced sets based on reverse nearest neighbor queries. In: Proc. SIGMOD, pp 201–212Google Scholar
  8. 8.
    Yang C, Lin K-I (2001) An index structure for efficient reverse nearest neighbor queries. In: Proc. ICDE, pp 485–492Google Scholar
  9. 9.
    Achtert E, Böhm C, Kröger P, Kunath P, Pryakhin A, Renz M (2006) Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: Proc. SIGMOD, pp 515–526Google Scholar
  10. 10.
    Stanoi I, Agrawal D, Abbadi AE (2000) Reverse nearest neighbor queries for dynamic databases. In: Proc. DMKD, pp 44–53Google Scholar
  11. 11.
    Singh A, Ferhatosmanoglu H, Tosun AS (2003) High dimensional reverse nearest neighbor queries. In: Proc. CIKM, pp 91–98Google Scholar
  12. 12.
    Tao Y, Papadias D, Lian X (2004) Reverse kNN search in arbitrary dimensionality. In: Proc. VLDB, pp 744–755Google Scholar
  13. 13.
    Emrich T, Kriegel H-P, Kröger P, Niedermayer J, Renz M, Züfle A (2013) A mutual-pruning approach for rknn join processing. In: Proc. BTW, pp 21–35Google Scholar
  14. 14.
    Emrich T, Kriegel H-P, Kröger P, Niedermayer J, Renz M, Züfle A (2013) Reverse-k-nearest-neighbor join processing. In: Proc. SSTD, pp 277–294Google Scholar
  15. 15.
    Wu W, Yang F, Chan C-Y, Tan K (2008) FINCH: evaluating reverse k-nearest-neighbor queries on location data. In: Proc. VLDB, pp 1056–1067Google Scholar
  16. 16.
    Böhm C, Krebs F (2004) The k-nearest neighbor join: turbo charging the KDD process. KAIS 6(6):728–749Google Scholar
  17. 17.
    Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: Proc. SSDBM, pp 297–306Google Scholar
  18. 18.
    Yu C, Zhang R, Huang Y, Xiong H (2010) High-dimensional knn joins with incremental updates. Geoinformatica 14(1):55–82CrossRefGoogle Scholar
  19. 19.
    Venkateswaran JG (2007) Indexing techniques for metric databases with costly searches, Ph.D. dissertation, University of Florida, Gainesville, FL, USA, aAI3300799Google Scholar
  20. 20.
    Tao Y, Yiu ML, Mamoulis N (2006) Reverse nearest neighbor search in metric spaces. IEEE TKDE 18(9):1239–1252Google Scholar
  21. 21.
    Cheema MA, Lin X, Zhang W, Zhang Y (2011) Influence zone: efficiently processing reverse k nearest neighbors queries. In: ICDE, pp 577–588Google Scholar
  22. 22.
    Achtert E, Kriegel H-P, Kröger P, Renz M, Züfle A (2009) Reverse k-nearest neighbor search in dynamic and general metric databases. In: Proc. EDBT, pp 886–897Google Scholar
  23. 23.
    Kriegel H-P, Kröger P, Renz M, Züfle A, Katzdobler A (2009) Reverse k-nearest neighbor search based on aggregate point access methods. In: Proc. SSDBM, pp 444–460Google Scholar
  24. 24.
    Xia C, Hsu W, Lee ML (2005) ERkNN: efficient reverse k-nearest neighbors retrieval with local kNN-distance estimation. In: Proc. CIKM, pp 533–540Google Scholar
  25. 25.
    Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient olap operations in spatial data warehouses. In: Proc. SSTD, pp 443–459Google Scholar
  26. 26.
    Kriegel H-P, Kröger P, Renz M, Züfle A, Katzdobler A (2009) Incremental reverse nearest neighbor ranking. In: Proc. ICDE, pp 1560–1567Google Scholar
  27. 27.
    Emrich T, Kriegel H-P, Kröger P, Renz M, Züfle A (2010) Boosting spatial pruning: on optimal pruning of mbrs. In: Proc. SIGMOD, pp 39–50Google Scholar
  28. 28.
    Achtert E, Hettab A, Kriegel H-P, Schubert E, Zimek A (2011) Spatial outlier detection: data, algorithms, visualizations. In: Proc. SSTD, pp 512–516Google Scholar
  29. 29.
    Ciaccia P, Patella M, Zezula P (1997) M-Tree: an efficient access method for similarity search in metric spaces. In: Proc. VLDB, pp 426–435Google Scholar
  30. 30.
    Emrich T (2013) Coping with distance and location dependencies in spatial, temporal and uncertain data, Ph.D. dissertation, Ludwig-Maximilians University MunichGoogle Scholar
  31. 31.
    Emrich T, Graf F, Kriegel H-P, Schubert M, Thoma M (2010) On the impact of flash ssds on spatial indexing. In: Proc. DaMoN, pp 3–8Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tobias Emrich
    • 1
  • Hans-Peter Kriegel
    • 1
  • Peer Kröger
    • 1
  • Johannes Niedermayer
    • 1
  • Matthias Renz
    • 1
  • Andreas Züfle
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations